--- license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model_index: - name: bertimbau-large-lener_br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br args: lener_br metric: name: Accuracy type: accuracy value: 0.9744464930592591 --- # bertimbau-large-lener_br This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1193 - Precision: 0.8287 - Recall: 0.9144 - F1: 0.8694 - Accuracy: 0.9744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0586 | 1.0 | 1957 | 0.1409 | 0.8317 | 0.8725 | 0.8516 | 0.9667 | | 0.0304 | 2.0 | 3914 | 0.1338 | 0.7137 | 0.9172 | 0.8027 | 0.9619 | | 0.0119 | 3.0 | 5871 | 0.1193 | 0.8287 | 0.9144 | 0.8694 | 0.9744 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3