update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lener_br
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: xlm-roberta-large-finetuned-lener-br
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: lener_br
|
20 |
+
type: lener_br
|
21 |
+
config: lener_br
|
22 |
+
split: train
|
23 |
+
args: lener_br
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8545767716535433
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.8976479710519514
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8755830076893987
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.979126510974644
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# xlm-roberta-large-finetuned-lener-br
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lener_br dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: nan
|
47 |
+
- Precision: 0.8546
|
48 |
+
- Recall: 0.8976
|
49 |
+
- F1: 0.8756
|
50 |
+
- Accuracy: 0.9791
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 2
|
71 |
+
- eval_batch_size: 2
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 15
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0836 | 1.0 | 3914 | nan | 0.5735 | 0.8348 | 0.6799 | 0.9526 |
|
82 |
+
| 0.0664 | 2.0 | 7828 | nan | 0.8153 | 0.8315 | 0.8233 | 0.9658 |
|
83 |
+
| 0.0505 | 3.0 | 11742 | nan | 0.6885 | 0.9147 | 0.7857 | 0.9644 |
|
84 |
+
| 0.1165 | 4.0 | 15656 | nan | 0.7572 | 0.8067 | 0.7811 | 0.9641 |
|
85 |
+
| 0.0206 | 5.0 | 19570 | nan | 0.8678 | 0.8770 | 0.8723 | 0.9774 |
|
86 |
+
| 0.02 | 6.0 | 23484 | nan | 0.7285 | 0.8907 | 0.8015 | 0.9669 |
|
87 |
+
| 0.0248 | 7.0 | 27398 | nan | 0.8717 | 0.9095 | 0.8902 | 0.9793 |
|
88 |
+
| 0.0223 | 8.0 | 31312 | nan | 0.8407 | 0.8801 | 0.8600 | 0.9766 |
|
89 |
+
| 0.0084 | 9.0 | 35226 | nan | 0.8354 | 0.8684 | 0.8516 | 0.9705 |
|
90 |
+
| 0.0067 | 10.0 | 39140 | nan | 0.8312 | 0.9062 | 0.8671 | 0.9753 |
|
91 |
+
| 0.006 | 11.0 | 43054 | nan | 0.8866 | 0.8953 | 0.8909 | 0.9784 |
|
92 |
+
| 0.0058 | 12.0 | 46968 | nan | 0.8961 | 0.8987 | 0.8974 | 0.9807 |
|
93 |
+
| 0.0062 | 13.0 | 50882 | nan | 0.8360 | 0.8785 | 0.8567 | 0.9783 |
|
94 |
+
| 0.0053 | 14.0 | 54796 | nan | 0.8327 | 0.8749 | 0.8533 | 0.9782 |
|
95 |
+
| 0.003 | 15.0 | 58710 | nan | 0.8546 | 0.8976 | 0.8756 | 0.9791 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.23.1
|
101 |
+
- Pytorch 1.12.1+cu113
|
102 |
+
- Datasets 2.6.1
|
103 |
+
- Tokenizers 0.13.1
|