Happyb commited on
Commit
07a3e1a
·
verified ·
1 Parent(s): 08a4ba5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -14,8 +14,7 @@ To train the model, we sample as uniformly as possible across languages while li
14
  We combine [WURA data](https://huggingface.co/datasets/castorini/wura) with high-quality English documents from [FineWeb-Edu](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1) and [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) which results into improved Lugha-Llama-Edu and Lugha-Llama-Maths models respectively.
15
  Our models consistently achieve the best performance amongst similary-sized baselines.
16
 
17
- In a separate ablation experiment, we translate English education documents to Swahili to study whether the performance gains from FineWeb-Edu data is due to its content or English source language.
18
- * Translated Swahili data 200M tokens: [FineWeb_Edu-swahili-translated](https://huggingface.co/datasets/princeton-nlp/fineweb_edu-swahili-translated)
19
 
20
 
21
  We demonstrate the findings in our paper [Adapting Large Language Models for African Languages:
@@ -23,7 +22,7 @@ The Lugha-Llama Model]()
23
 
24
  Authors: [Happy Buzaaba](https://buzaabah.github.io/)\*, [Alexander Wettig](https://www.cs.princeton.edu/~awettig/)\*, [David Ifeoluwa Adelani](https://dadelani.github.io/), [Christiane Fellbaum](https://www.cs.princeton.edu/people/profile/fellbaum) (* equal contribution)
25
 
26
- Contact \textit({happy.buzaaba@, awettig@cs}princeton.edu)
27
 
28
 
29
  ## Lugha-Llama models
 
14
  We combine [WURA data](https://huggingface.co/datasets/castorini/wura) with high-quality English documents from [FineWeb-Edu](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1) and [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) which results into improved Lugha-Llama-Edu and Lugha-Llama-Maths models respectively.
15
  Our models consistently achieve the best performance amongst similary-sized baselines.
16
 
17
+ In a separate ablation experiment, we translate English education documents to Swahili to study whether the performance gains from FineWeb-Edu data is due to its content or English source language. [FineWeb_Edu-swahili-translated](https://huggingface.co/datasets/princeton-nlp/fineweb_edu-swahili-translated).
 
18
 
19
 
20
  We demonstrate the findings in our paper [Adapting Large Language Models for African Languages:
 
22
 
23
  Authors: [Happy Buzaaba](https://buzaabah.github.io/)\*, [Alexander Wettig](https://www.cs.princeton.edu/~awettig/)\*, [David Ifeoluwa Adelani](https://dadelani.github.io/), [Christiane Fellbaum](https://www.cs.princeton.edu/people/profile/fellbaum) (* equal contribution)
24
 
25
+ Contact *{happy.buzaaba@, awettig@cs}princeton.edu*
26
 
27
 
28
  ## Lugha-Llama models