Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1343.30 +/- 218.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b0ef3da0bd706cac118a837face2bfb7eb80891901d5ef53963ee3fe6d76da1
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f49c854a430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49c854a4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49c854a550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49c854a5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f49c854a670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f49c854a700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49c854a790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49c854a820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f49c854a8b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49c854a940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49c854a9d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49c854aa60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f49c854e380>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679241736946592441,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH36Aj96+u4+stXYPhA9GEC7PMw/MB0AwBsrGT/pw8u/dHxkP5/vmL1Xu2M/cCRYQJsevb3Qdey/FAc2P9Mm1jxZ15A//V6CvxU7Fz+P83Q/UlEzP2JCVj/w0As/phxFwLt7279ZpCLAMVeqPu4zt79ih6U+fatkP+0VkT2daJy+zpkSP+GeCr9YsJq+Y2/qv+zMlT8sU4y74gyEvsfsmT9Pfbq/WjcjvzV0Nj92gRE8a1PEPxzmor7kE0W+eMEnPiwkhL/bu8I+OiaSP/qjnb+7e9u/InnJPjFXqj6i3DI/35yJvvh41z+sH8G//BNVP5EbNT6rWFM/zdjVvvTN177yeUS/Q7oaPy+JF72bhSI/lE2Zv/PdAkC46DQ/ccjhPOxuQj/mriZAPYkzPXgzJb4+LjI/MEqMPwrzET9IeqA+u3vbvyJ5yT4xV6o+otwyP+649D6s5iO/hHQOPw61SkA3EKm+H63gv+jErL3UE4q+/DyQPxh5A7/lsfU9JRTQvyFH+b9L4ZA/NXTxPiHw47/ZVXu8yi2oPkM/hrsLOJE/SEA9PRMvaj9qUQq/EcXXP8tLFT9ZpCLAFV5AwO4zt7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC6Zba2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbu9zvQAAAAAsWOO/AAAAABQO5b0AAAAAZW3xPwAAAACBCJi9AAAAAIQx8z8AAAAAirTaPQAAAADLteG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFq4wtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEF3S70AAAAAC57ivwAAAABxSjS8AAAAAAKC5T8AAAAAIPzpvQAAAAB/FNk/AAAAAMBoWr0AAAAAFDXjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEfEmzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAz2Xk9AAAAAAaC7b8AAAAAHNMDPgAAAACBreM/AAAAADTiJz0AAAAAnC7bPwAAAABBlrm9AAAAAAdf2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOH862AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATMkDOwAAAAAlzOO/AAAAANKjCr4AAAAAN0bhPwAAAABwz3e9AAAAABPX5z8AAAAAEjaQPQAAAABrauS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJH5SphnanKMAWyUTegDjAF0lEdAqrpUCJXQt3V9lChoBkdAkXmJlOGj9GgHTegDaAhHQKq8vIf8uSR1fZQoaAZHQJHbypzcRDloB03oA2gIR0Cqw2/a6BiDdX2UKGgGR0CWYTDRc/t6aAdN6ANoCEdAqsaxiI+GGnV9lChoBkdAlXOYJZ4fOmgHTegDaAhHQKrKHIMjNY91fZQoaAZHQJLIqmdiDuloB03oA2gIR0CqzAc2aUiZdX2UKGgGR0CVH2ejVQQ+aAdN6ANoCEdAqtCPdfsu4HV9lChoBkdAkvjTMNc4YWgHTegDaAhHQKrS/fkWAPN1fZQoaAZHQJPY35ckdFRoB03oA2gIR0Cq1mG9QGfPdX2UKGgGR0CVtst2LYPHaAdN6ANoCEdAqthF0aIeo3V9lChoBkdAloJCEg4ffWgHTegDaAhHQKrd/Ea2nbZ1fZQoaAZHQJP3/Adn005oB03oA2gIR0Cq4b3YcvM9dX2UKGgGR0CTdEYBvJiiaAdN6ANoCEdAquYELORkmXV9lChoBkdAleMbcKw6hmgHTegDaAhHQKrn3ptaY/p1fZQoaAZHQJEgAinpB5ZoB03oA2gIR0Cq7HfTLGJfdX2UKGgGR0CWlHniNsFdaAdN6ANoCEdAqu7Yzk6tDHV9lChoBkdAkkyDlo11n2gHTegDaAhHQKryP0WdmQN1fZQoaAZHQJKdFNZeRgZoB03oA2gIR0Cq9CAlWwNcdX2UKGgGR0CMMmlZX+2maAdN6ANoCEdAqvjLB0p3HXV9lChoBkdAk6oxri2lVWgHTegDaAhHQKr8LIcR15l1fZQoaAZHQJZcDhzeXRhoB03oA2gIR0CrAUdRJmNBdX2UKGgGR0CVQNrULDyfaAdN6ANoCEdAqwOWLpA2RHV9lChoBkdAl8fQ+EAYHmgHTegDaAhHQKsIA0D2alV1fZQoaAZHQJVrkXdj5KxoB03oA2gIR0CrCnE3CKrJdX2UKGgGR0CZ08sMiKR/aAdN6ANoCEdAqw3CILw4KnV9lChoBkdAmDImJBPbf2gHTegDaAhHQKsPnMwDeTF1fZQoaAZHQJddtUADJU5oB03oA2gIR0CrFBOVopQUdX2UKGgGR0CWiBTGo73gaAdN6ANoCEdAqxaYu5BkZ3V9lChoBkdAlTbUXHim22gHTegDaAhHQKsbiGvfTCt1fZQoaAZHQJLaMFcIJJJoB03oA2gIR0CrHnb8FY+0dX2UKGgGR0CVepeqJdjYaAdN6ANoCEdAqyPQ8nuy/3V9lChoBkdAkzrP8yeqaWgHTegDaAhHQKsmSNJe3QV1fZQoaAZHQItPHeFcpspoB03oA2gIR0CrKZwOFxn4dX2UKGgGR0CUWjaK1og3aAdN6ANoCEdAqyt9c+qzaHV9lChoBkdAk5T2QbMot2gHTegDaAhHQKswBgJkXk51fZQoaAZHQJG8kSoOx0NoB03oA2gIR0CrMmRgiNbUdX2UKGgGR0CSpiRT0g8saAdN6ANoCEdAqzZfjlxOtXV9lChoBkdAkd8q3NLUTmgHTegDaAhHQKs5BKnvUjN1fZQoaAZHQJh5kHpr1uloB03oA2gIR0CrP5Qvg3tKdX2UKGgGR0CXr5lkpZwGaAdN6ANoCEdAq0HpKcurZXV9lChoBkdAml4h2r4nGGgHTegDaAhHQKtFL1XeWOZ1fZQoaAZHQJox4iQkondoB03oA2gIR0CrRw8tXgccdX2UKGgGR0CX1GVlwtJ4aAdN6ANoCEdAq0txdMTN+3V9lChoBkdAlBGznq3VkWgHTegDaAhHQKtN0imEXch1fZQoaAZHQJYkpFz+3phoB03oA2gIR0CrUS1s1sLwdX2UKGgGR0CUhKgSeyzHaAdN6ANoCEdAq1MCZSeiBXV9lChoBkdAlL9IY77sOWgHTegDaAhHQKtZccCo0hx1fZQoaAZHQJXGSprDZUVoB03oA2gIR0CrXTmQ0XP7dX2UKGgGR0CYn8jvNNahaAdN6ANoCEdAq2ClEd/8VHV9lChoBkdAk+RFOXVslGgHTegDaAhHQKtihzp5eJJ1fZQoaAZHQJbc2HIp6QhoB03oA2gIR0CrZvHWrfcfdX2UKGgGR0CYG2qLCN0eaAdN6ANoCEdAq2lc4YJmd3V9lChoBkdAhsARffGdZ2gHTegDaAhHQKtssqqfe1t1fZQoaAZHQJhT0dsBQvZoB03oA2gIR0CrbpIx59mZdX2UKGgGR0CWuWCFsYVJaAdN6ANoCEdAq3O4Ui6g/XV9lChoBkdAlbGHE2pAEGgHTegDaAhHQKt3PDFZPmB1fZQoaAZHQJhgLj81n/VoB03oA2gIR0CrfGaisXBQdX2UKGgGR0CYFt4tYjjaaAdN6ANoCEdAq34//NqxknV9lChoBkdAl/E8cU/OdGgHTegDaAhHQKuCpE4vN/x1fZQoaAZHQJlZHfLs8gZoB03oA2gIR0CrhP8PFvQ4dX2UKGgGR0CbwMu7YkE+aAdN6ANoCEdAq4hAd0aIe3V9lChoBkdAmrJIL1EmY2gHTegDaAhHQKuKGjEehf11fZQoaAZHQJL2Umnfl6toB03oA2gIR0CrjqK4pc5bdX2UKGgGR0CYWEYOUdJbaAdN6ANoCEdAq5GecvugH3V9lChoBkdAl7CRxPwd82gHTegDaAhHQKuWorEtNBZ1fZQoaAZHQJnyBXEIgNhoB03oA2gIR0CrmY6/yoXLdX2UKGgGR0CJTABDohZAaAdN6ANoCEdAq55iN0eU6nV9lChoBkdAmYU1R51Ng2gHTegDaAhHQKugxO4XoDB1fZQoaAZHQJsFItnPE89oB03oA2gIR0CrpCLi++M7dX2UKGgGR0CY3lSSvC/HaAdN6ANoCEdAq6YI1rIo3XV9lChoBkdAmDmi3kPtlmgHTegDaAhHQKuqblum78N1fZQoaAZHQJjMHFaSs8xoB03oA2gIR0CrrMjb8FY/dX2UKGgGR0CXuxM3IdU9aAdN6ANoCEdAq7Dj4agmJHV9lChoBkdAmGTXf642CWgHTegDaAhHQKuznvkzXSV1fZQoaAZHQJfvjBLwnYxoB03oA2gIR0Crue6mfoRqdX2UKGgGR0CZUmtXPqs2aAdN6ANoCEdAq7xO2y9mH3V9lChoBkdAlmRx0+1SfmgHTegDaAhHQKu/og6ltTF1fZQoaAZHQJmeTpkf9xZoB03oA2gIR0CrwYFr/KhddX2UKGgGR0CXAscPvrnlaAdN6ANoCEdAq8Xk0iyIHnV9lChoBkdAla0JQ53kgmgHTegDaAhHQKvITw5vLox1fZQoaAZHQJXyN3C9AX5oB03oA2gIR0Cry6Q71ZkkdX2UKGgGR0CTzdGbTc7AaAdN6ANoCEdAq83VmOEM9nV9lChoBkdAljuU47zTW2gHTegDaAhHQKvUiBOHnEF1fZQoaAZHQJcBlNIsiB5oB03oA2gIR0Cr1+qSxJNCdX2UKGgGR0CWpCRE4NqhaAdN6ANoCEdAq9tAWepXIXV9lChoBkdAlig3WnTAnGgHTegDaAhHQKvdG/0ulGh1fZQoaAZHQJahbt7a7EpoB03oA2gIR0Cr4XrQHAymdX2UKGgGR0CZKlRFqi48aAdN6ANoCEdAq+PYRAbADnV9lChoBkdAmtDPW6K+BmgHTegDaAhHQKvnJQ3PzFx1fZQoaAZHQJYOI84gieNoB03oA2gIR0Cr6QnFHavidX2UKGgGR0CUwYdEsrd4aAdN6ANoCEdAq+6ENvwVkHV9lChoBkdAmd9kGFBY3mgHTegDaAhHQKvyNxlQMx51fZQoaAZHQJkk8ZxaPjpoB03oA2gIR0Cr9rt2C/XYdX2UKGgGR0CRCOiudPLxaAdN6ANoCEdAq/idAs052nV9lChoBkdAmC5R7iQ1aWgHTegDaAhHQKv8/xoZhrp1fZQoaAZHQJRhVme18b9oB03oA2gIR0Cr/0fUnXumdX2UKGgGR0CWxyo3rD64aAdN6ANoCEdArAKEUIsyz3V9lChoBkdAmw+4lIEr5WgHTegDaAhHQKwEVq59Vm11fZQoaAZHQJVLNw1ivxJoB03oA2gIR0CsCLEKu0TldX2UKGgGR0CYVMmoR7JGaAdN6ANoCEdArAufMMZxaXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6f4c74ae605ad7a986908d96b9cca4674df88f785c2916c7c6ec0625a47408e
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8005f442d3f0f63d7880603ef148a9416eb242e13fa10d0fee1fa553db040b6
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49c854a430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49c854a4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49c854a550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49c854a5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f49c854a670>", "forward": "<function ActorCriticPolicy.forward at 0x7f49c854a700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49c854a790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49c854a820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49c854a8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49c854a940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49c854a9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49c854aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49c854e380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679241736946592441, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH36Aj96+u4+stXYPhA9GEC7PMw/MB0AwBsrGT/pw8u/dHxkP5/vmL1Xu2M/cCRYQJsevb3Qdey/FAc2P9Mm1jxZ15A//V6CvxU7Fz+P83Q/UlEzP2JCVj/w0As/phxFwLt7279ZpCLAMVeqPu4zt79ih6U+fatkP+0VkT2daJy+zpkSP+GeCr9YsJq+Y2/qv+zMlT8sU4y74gyEvsfsmT9Pfbq/WjcjvzV0Nj92gRE8a1PEPxzmor7kE0W+eMEnPiwkhL/bu8I+OiaSP/qjnb+7e9u/InnJPjFXqj6i3DI/35yJvvh41z+sH8G//BNVP5EbNT6rWFM/zdjVvvTN177yeUS/Q7oaPy+JF72bhSI/lE2Zv/PdAkC46DQ/ccjhPOxuQj/mriZAPYkzPXgzJb4+LjI/MEqMPwrzET9IeqA+u3vbvyJ5yT4xV6o+otwyP+649D6s5iO/hHQOPw61SkA3EKm+H63gv+jErL3UE4q+/DyQPxh5A7/lsfU9JRTQvyFH+b9L4ZA/NXTxPiHw47/ZVXu8yi2oPkM/hrsLOJE/SEA9PRMvaj9qUQq/EcXXP8tLFT9ZpCLAFV5AwO4zt7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC6Zba2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbu9zvQAAAAAsWOO/AAAAABQO5b0AAAAAZW3xPwAAAACBCJi9AAAAAIQx8z8AAAAAirTaPQAAAADLteG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFq4wtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEF3S70AAAAAC57ivwAAAABxSjS8AAAAAAKC5T8AAAAAIPzpvQAAAAB/FNk/AAAAAMBoWr0AAAAAFDXjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEfEmzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAz2Xk9AAAAAAaC7b8AAAAAHNMDPgAAAACBreM/AAAAADTiJz0AAAAAnC7bPwAAAABBlrm9AAAAAAdf2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOH862AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATMkDOwAAAAAlzOO/AAAAANKjCr4AAAAAN0bhPwAAAABwz3e9AAAAABPX5z8AAAAAEjaQPQAAAABrauS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJH5SphnanKMAWyUTegDjAF0lEdAqrpUCJXQt3V9lChoBkdAkXmJlOGj9GgHTegDaAhHQKq8vIf8uSR1fZQoaAZHQJHbypzcRDloB03oA2gIR0Cqw2/a6BiDdX2UKGgGR0CWYTDRc/t6aAdN6ANoCEdAqsaxiI+GGnV9lChoBkdAlXOYJZ4fOmgHTegDaAhHQKrKHIMjNY91fZQoaAZHQJLIqmdiDuloB03oA2gIR0CqzAc2aUiZdX2UKGgGR0CVH2ejVQQ+aAdN6ANoCEdAqtCPdfsu4HV9lChoBkdAkvjTMNc4YWgHTegDaAhHQKrS/fkWAPN1fZQoaAZHQJPY35ckdFRoB03oA2gIR0Cq1mG9QGfPdX2UKGgGR0CVtst2LYPHaAdN6ANoCEdAqthF0aIeo3V9lChoBkdAloJCEg4ffWgHTegDaAhHQKrd/Ea2nbZ1fZQoaAZHQJP3/Adn005oB03oA2gIR0Cq4b3YcvM9dX2UKGgGR0CTdEYBvJiiaAdN6ANoCEdAquYELORkmXV9lChoBkdAleMbcKw6hmgHTegDaAhHQKrn3ptaY/p1fZQoaAZHQJEgAinpB5ZoB03oA2gIR0Cq7HfTLGJfdX2UKGgGR0CWlHniNsFdaAdN6ANoCEdAqu7Yzk6tDHV9lChoBkdAkkyDlo11n2gHTegDaAhHQKryP0WdmQN1fZQoaAZHQJKdFNZeRgZoB03oA2gIR0Cq9CAlWwNcdX2UKGgGR0CMMmlZX+2maAdN6ANoCEdAqvjLB0p3HXV9lChoBkdAk6oxri2lVWgHTegDaAhHQKr8LIcR15l1fZQoaAZHQJZcDhzeXRhoB03oA2gIR0CrAUdRJmNBdX2UKGgGR0CVQNrULDyfaAdN6ANoCEdAqwOWLpA2RHV9lChoBkdAl8fQ+EAYHmgHTegDaAhHQKsIA0D2alV1fZQoaAZHQJVrkXdj5KxoB03oA2gIR0CrCnE3CKrJdX2UKGgGR0CZ08sMiKR/aAdN6ANoCEdAqw3CILw4KnV9lChoBkdAmDImJBPbf2gHTegDaAhHQKsPnMwDeTF1fZQoaAZHQJddtUADJU5oB03oA2gIR0CrFBOVopQUdX2UKGgGR0CWiBTGo73gaAdN6ANoCEdAqxaYu5BkZ3V9lChoBkdAlTbUXHim22gHTegDaAhHQKsbiGvfTCt1fZQoaAZHQJLaMFcIJJJoB03oA2gIR0CrHnb8FY+0dX2UKGgGR0CVepeqJdjYaAdN6ANoCEdAqyPQ8nuy/3V9lChoBkdAkzrP8yeqaWgHTegDaAhHQKsmSNJe3QV1fZQoaAZHQItPHeFcpspoB03oA2gIR0CrKZwOFxn4dX2UKGgGR0CUWjaK1og3aAdN6ANoCEdAqyt9c+qzaHV9lChoBkdAk5T2QbMot2gHTegDaAhHQKswBgJkXk51fZQoaAZHQJG8kSoOx0NoB03oA2gIR0CrMmRgiNbUdX2UKGgGR0CSpiRT0g8saAdN6ANoCEdAqzZfjlxOtXV9lChoBkdAkd8q3NLUTmgHTegDaAhHQKs5BKnvUjN1fZQoaAZHQJh5kHpr1uloB03oA2gIR0CrP5Qvg3tKdX2UKGgGR0CXr5lkpZwGaAdN6ANoCEdAq0HpKcurZXV9lChoBkdAml4h2r4nGGgHTegDaAhHQKtFL1XeWOZ1fZQoaAZHQJox4iQkondoB03oA2gIR0CrRw8tXgccdX2UKGgGR0CX1GVlwtJ4aAdN6ANoCEdAq0txdMTN+3V9lChoBkdAlBGznq3VkWgHTegDaAhHQKtN0imEXch1fZQoaAZHQJYkpFz+3phoB03oA2gIR0CrUS1s1sLwdX2UKGgGR0CUhKgSeyzHaAdN6ANoCEdAq1MCZSeiBXV9lChoBkdAlL9IY77sOWgHTegDaAhHQKtZccCo0hx1fZQoaAZHQJXGSprDZUVoB03oA2gIR0CrXTmQ0XP7dX2UKGgGR0CYn8jvNNahaAdN6ANoCEdAq2ClEd/8VHV9lChoBkdAk+RFOXVslGgHTegDaAhHQKtihzp5eJJ1fZQoaAZHQJbc2HIp6QhoB03oA2gIR0CrZvHWrfcfdX2UKGgGR0CYG2qLCN0eaAdN6ANoCEdAq2lc4YJmd3V9lChoBkdAhsARffGdZ2gHTegDaAhHQKtssqqfe1t1fZQoaAZHQJhT0dsBQvZoB03oA2gIR0CrbpIx59mZdX2UKGgGR0CWuWCFsYVJaAdN6ANoCEdAq3O4Ui6g/XV9lChoBkdAlbGHE2pAEGgHTegDaAhHQKt3PDFZPmB1fZQoaAZHQJhgLj81n/VoB03oA2gIR0CrfGaisXBQdX2UKGgGR0CYFt4tYjjaaAdN6ANoCEdAq34//NqxknV9lChoBkdAl/E8cU/OdGgHTegDaAhHQKuCpE4vN/x1fZQoaAZHQJlZHfLs8gZoB03oA2gIR0CrhP8PFvQ4dX2UKGgGR0CbwMu7YkE+aAdN6ANoCEdAq4hAd0aIe3V9lChoBkdAmrJIL1EmY2gHTegDaAhHQKuKGjEehf11fZQoaAZHQJL2Umnfl6toB03oA2gIR0CrjqK4pc5bdX2UKGgGR0CYWEYOUdJbaAdN6ANoCEdAq5GecvugH3V9lChoBkdAl7CRxPwd82gHTegDaAhHQKuWorEtNBZ1fZQoaAZHQJnyBXEIgNhoB03oA2gIR0CrmY6/yoXLdX2UKGgGR0CJTABDohZAaAdN6ANoCEdAq55iN0eU6nV9lChoBkdAmYU1R51Ng2gHTegDaAhHQKugxO4XoDB1fZQoaAZHQJsFItnPE89oB03oA2gIR0CrpCLi++M7dX2UKGgGR0CY3lSSvC/HaAdN6ANoCEdAq6YI1rIo3XV9lChoBkdAmDmi3kPtlmgHTegDaAhHQKuqblum78N1fZQoaAZHQJjMHFaSs8xoB03oA2gIR0CrrMjb8FY/dX2UKGgGR0CXuxM3IdU9aAdN6ANoCEdAq7Dj4agmJHV9lChoBkdAmGTXf642CWgHTegDaAhHQKuznvkzXSV1fZQoaAZHQJfvjBLwnYxoB03oA2gIR0Crue6mfoRqdX2UKGgGR0CZUmtXPqs2aAdN6ANoCEdAq7xO2y9mH3V9lChoBkdAlmRx0+1SfmgHTegDaAhHQKu/og6ltTF1fZQoaAZHQJmeTpkf9xZoB03oA2gIR0CrwYFr/KhddX2UKGgGR0CXAscPvrnlaAdN6ANoCEdAq8Xk0iyIHnV9lChoBkdAla0JQ53kgmgHTegDaAhHQKvITw5vLox1fZQoaAZHQJXyN3C9AX5oB03oA2gIR0Cry6Q71ZkkdX2UKGgGR0CTzdGbTc7AaAdN6ANoCEdAq83VmOEM9nV9lChoBkdAljuU47zTW2gHTegDaAhHQKvUiBOHnEF1fZQoaAZHQJcBlNIsiB5oB03oA2gIR0Cr1+qSxJNCdX2UKGgGR0CWpCRE4NqhaAdN6ANoCEdAq9tAWepXIXV9lChoBkdAlig3WnTAnGgHTegDaAhHQKvdG/0ulGh1fZQoaAZHQJahbt7a7EpoB03oA2gIR0Cr4XrQHAymdX2UKGgGR0CZKlRFqi48aAdN6ANoCEdAq+PYRAbADnV9lChoBkdAmtDPW6K+BmgHTegDaAhHQKvnJQ3PzFx1fZQoaAZHQJYOI84gieNoB03oA2gIR0Cr6QnFHavidX2UKGgGR0CUwYdEsrd4aAdN6ANoCEdAq+6ENvwVkHV9lChoBkdAmd9kGFBY3mgHTegDaAhHQKvyNxlQMx51fZQoaAZHQJkk8ZxaPjpoB03oA2gIR0Cr9rt2C/XYdX2UKGgGR0CRCOiudPLxaAdN6ANoCEdAq/idAs052nV9lChoBkdAmC5R7iQ1aWgHTegDaAhHQKv8/xoZhrp1fZQoaAZHQJRhVme18b9oB03oA2gIR0Cr/0fUnXumdX2UKGgGR0CWxyo3rD64aAdN6ANoCEdArAKEUIsyz3V9lChoBkdAmw+4lIEr5WgHTegDaAhHQKwEVq59Vm11fZQoaAZHQJVLNw1ivxJoB03oA2gIR0CsCLEKu0TldX2UKGgGR0CYVMmoR7JGaAdN6ANoCEdArAufMMZxaXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c807008ade8d95e46113e584bb78f053ab1fd587188275eb96d7df9c789adb61
|
3 |
+
size 1039955
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1343.2952081513008, "std_reward": 218.59778383747536, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T17:04:25.048885"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2460ac3f1aa6df62066bc82423cf542cb48db86ce72e691e8cfe72ca5cd1b053
|
3 |
+
size 2136
|