LuniLand commited on
Commit
e593e04
1 Parent(s): 505bfd6

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1957.61 +/- 137.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85cad24880f57a0a3466964c627bbbb5c10c6eb2443ef783d107ffb46516b63c
3
+ size 129265
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f248de990d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f248de99160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f248de991f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f248de99280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f248de99310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f248de993a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f248de99430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f248de994c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f248de99550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f248de995e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f248de99670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f248de99700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f248de96e00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679221200266316867,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACLDgj+dV4U+j7dhPubRmz+ImEE/uIWBvzOR0j5ogk2/mUfhvtyunb8sooC/9az3Pkqhcj+4SZW/G02yPmmisb+xTBY9Ll+5PI4wVD5XHKQ9sxebv/WwsT6MfEu8kZ40wMTcLr+1ubW/o4eNPiPwvL+2Nwc/cshEvhakFj88Z+0+fA4cPx1Y879BDQw/cflmvncjfr1aYD6+Uvpfvhb12j+FLDw/vI+Tv+64Xz7NOxk+zJVqvscb3T7Z2iw+ss8JPtk8rb9ws7U+cAFOvx9QEMDE3C6/tbm1v6OHjT65bi0/lKZxPr7Trj6lkww+dudDP65Jdz8pzXk/ESWSPcTXZb5TJkq/54FMP4Z+Lj9DOvi/M5dePszBaj+pemy+PgyYPoqUrz7PMx0+DOBdPrlApLuRFxs/FPkjv2XqZz8p4aY+xNwuv+RQND+jh40+uW4tP9NHJT9aioM+VEZlPjsMt77JHq2+pw1gPhH0nr48vcw/sWInv6sYhT/XnJY/Yg1vv5ljgb7jXApAC4gjv6+WOT/+/oi+oclIwIAUCMDyZ66/ag1lPy6ADb/T2Y69MXOIP6Fkuz+1ubW/o4eNPrluLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABETxM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmhAUvQAAAADjiNu/AAAAAKg9br0AAAAA4IbkPwAAAAAOTBE+AAAAAOgO7z8AAAAAQQ2kPAAAAAAFl9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7uBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBv6q70AAAAAvoj5vwAAAAAz93m8AAAAAFkp2j8AAAAAW6NjuwAAAADh/vs/AAAAAPO3zr0AAAAAOlDlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAj98A8AAAAAPzE2r8AAAAAOyyKvAAAAADB/+U/AAAAAKyBOb0AAAAAkoP0PwAAAABzdYO9AAAAAL4k6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiKIM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALxJkPQAAAAAgx+W/AAAAALFcSDwAAAAArmTaPwAAAAAxn7Y9AAAAAA/26T8AAAAAIjcDvgAAAAA6c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJzQxqwhW5qMAWyUTegDjAF0lEdAs1PNoexOcnV9lChoBkdAnBD3o5ggHWgHTegDaAhHQLNUibzbvgF1fZQoaAZHQJO5YjUutfZoB03oA2gIR0CzVrNE9dNWdX2UKGgGR0CXkSgOjIq9aAdN6ANoCEdAs1c2qioKlnV9lChoBkdAl7a57HAAQ2gHTegDaAhHQLNciAI6bON1fZQoaAZHQJiCVS3solVoB03oA2gIR0CzXQk9ECvHdX2UKGgGR0CWvgavA44qaAdN6ANoCEdAs15pQKrq+3V9lChoBkdAhsyVMdtEX2gHTegDaAhHQLNetzgdfb91fZQoaAZHQIUCEgZCOWBoB03oA2gIR0CzY5WmxdIHdX2UKGgGR0CS4Ihx5s0paAdN6ANoCEdAs2RWRr8BMnV9lChoBkdAlu9Kgh8pkWgHTegDaAhHQLNmZG7z06J1fZQoaAZHQJi6jd/J/5NoB03oA2gIR0CzZuKrq+rVdX2UKGgGR0CXV9FQ2uPnaAdN6ANoCEdAs2xARvm5lXV9lChoBkdAmSVFSKm8/WgHTegDaAhHQLNsupLEk0J1fZQoaAZHQJs7Qv8IiTtoB03oA2gIR0CzbhLlq8DkdX2UKGgGR0CY5zRh+fAcaAdN6ANoCEdAs25gpSaVlnV9lChoBkdAlteRzmwJPmgHTegDaAhHQLNy7Ip6QeV1fZQoaAZHQJH80Cgbp/xoB03oA2gIR0Czc5kknkT6dX2UKGgGR0CbPAM3IdU9aAdN6ANoCEdAs3WPxusLfHV9lChoBkdAl7W6AavRq2gHTegDaAhHQLN2DOearm11fZQoaAZHQJnD1z+3pfRoB03oA2gIR0Cze82YfGModX2UKGgGR0CZq75wwTM8aAdN6ANoCEdAs3xEyO7xu3V9lChoBkdAmh5vwd8zAWgHTegDaAhHQLN9mblijL11fZQoaAZHQJvNEpH7P6doB03oA2gIR0CzfelbNbC8dX2UKGgGR0CVF22L5ylvaAdN6ANoCEdAs4Js4WDYiHV9lChoBkdAmtcVlbu+iGgHTegDaAhHQLOC6bkfcN91fZQoaAZHQIk2TNnoPkJoB03oA2gIR0CzhLz0g8r7dX2UKGgGR0CXrH9tdiUgaAdN6ANoCEdAs4UwwL3K0XV9lChoBkdAmtvVUVBUrGgHTegDaAhHQLOLZwfyPMl1fZQoaAZHQJm4CeWfK6poB03oA2gIR0Czi+cVLzwudX2UKGgGR0CXabhwVCXyaAdN6ANoCEdAs41L8vVVgnV9lChoBkdAmmAhRMvh62gHTegDaAhHQLONlqJdjXp1fZQoaAZHQJx3J2hZha1oB03oA2gIR0CzkkUbgjyGdX2UKGgGR0CaaeLq2SdOaAdN6ANoCEdAs5LFfG+9J3V9lChoBkdAnCtKyv9tM2gHTegDaAhHQLOUhy+HrQh1fZQoaAZHQJqItfXwsoVoB03oA2gIR0CzlP6ab4JvdX2UKGgGR0CYyu+lj3EiaAdN6ANoCEdAs5twE4ecQXV9lChoBkdAm/wuaz/p+2gHTegDaAhHQLOb65sj3VV1fZQoaAZHQJs5W32EkB1oB03oA2gIR0CznUNGmUGFdX2UKGgGR0CZokW0JF9baAdN6ANoCEdAs52Q+nqFAXV9lChoBkdAmnERW912aGgHTegDaAhHQLOiL/pMYdh1fZQoaAZHQJqbGE9Mbm5oB03oA2gIR0Czoqv9LpRodX2UKGgGR0CcOvcT8HfNaAdN6ANoCEdAs6Qtx5s0pHV9lChoBkdAnMfveHi3omgHTegDaAhHQLOkn8vmHQB1fZQoaAZHQJn3WdlNDdBoB03oA2gIR0CzqzN3jdYXdX2UKGgGR0CWYARNATqTaAdN6ANoCEdAs6uvYSQHRnV9lChoBkdAmpYxfKISDmgHTegDaAhHQLOtAmelKsd1fZQoaAZHQJoV/ovBacJoB03oA2gIR0CzrVEfkmx/dX2UKGgGR0CbQyEXcgyNaAdN6ANoCEdAs7Hvh73PA3V9lChoBkdAmu5SAYpDu2gHTegDaAhHQLOybeOXE611fZQoaAZHQJuAD0mMOwxoB03oA2gIR0Czs88v24/edX2UKGgGR0Cb6Te54GD+aAdN6ANoCEdAs7Q9MURFqnV9lChoBkdAleh6unuRcWgHTegDaAhHQLO7HsPrfLt1fZQoaAZHQJsh+xKQJX1oB03oA2gIR0Czu6C2phnbdX2UKGgGR0CUNEqvvBrOaAdN6ANoCEdAs70BZcLSeHV9lChoBkdAi1XzINmUW2gHTegDaAhHQLO9Tc3VCol1fZQoaAZHQJHle2y9mHxoB03oA2gIR0Czwedj5KvndX2UKGgGR0CXHUwIt16maAdN6ANoCEdAs8JlEBsAN3V9lChoBkdAmcAreZXuE2gHTegDaAhHQLPDx78ejmF1fZQoaAZHQJOaymsNlRRoB03oA2gIR0CzxBQnhKlIdX2UKGgGR0CX+pwi7kGSaAdN6ANoCEdAs8ygZbY9PnV9lChoBkdAmFP7lNlAeWgHTegDaAhHQLPNI5hScb11fZQoaAZHQJMjveCTUy5oB03oA2gIR0CzznykKu0UdX2UKGgGR0Ca7ursByS3aAdN6ANoCEdAs87L1kDp1XV9lChoBkdAmJOWRFI/aGgHTegDaAhHQLPTZ8ujASF1fZQoaAZHQJnT7tKIznBoB03oA2gIR0Cz0+MJ2MbWdX2UKGgGR0CYXdUjLSuyaAdN6ANoCEdAs9Vi0x/NJXV9lChoBkdAmrvrRWtEHGgHTegDaAhHQLPV0zu4PPN1fZQoaAZHQJmORhUipvRoB03oA2gIR0Cz3GqUeMhpdX2UKGgGR0CcIzkHlfZ3aAdN6ANoCEdAs9zijafzz3V9lChoBkdAncVw/1QIlmgHTegDaAhHQLPeOFA3T/h1fZQoaAZHQJyivbYbsGBoB03oA2gIR0Cz3ok+X7cgdX2UKGgGR0Ce1jj8k2P1aAdN6ANoCEdAs+McUmD15HV9lChoBkdAm08NZq20A2gHTegDaAhHQLPjlpu/Dcd1fZQoaAZHQJ7A9mDlHSZoB03oA2gIR0Cz5OdmpVCHdX2UKGgGR0CfCLTZg5R1aAdN6ANoCEdAs+VKjL0SRXV9lChoBkdAnndlea8Yh2gHTegDaAhHQLPsCrS3LFJ1fZQoaAZHQJ6R5J+UhV5oB03oA2gIR0Cz7IUngHeKdX2UKGgGR0CdTzgow22oaAdN6ANoCEdAs+3kfzSThnV9lChoBkdAnbKCJ9AoomgHTegDaAhHQLPuM/zJ6pp1fZQoaAZHQJ23bX+VC5VoB03oA2gIR0Cz8sBkmQbNdX2UKGgGR0CdyOzV+Zw5aAdN6ANoCEdAs/NBpVS4v3V9lChoBkdAndPs3dbgTGgHTegDaAhHQLP0mMfRu0l1fZQoaAZHQJ0dXlS0jTtoB03oA2gIR0Cz9OuX/o7ndX2UKGgGR0CdHMhYeT3ZaAdN6ANoCEdAs/vlQ3xWk3V9lChoBkdAnCesGs3hoGgHTegDaAhHQLP8Y4p+c6N1fZQoaAZHQJ6F2ACnxaxoB03oA2gIR0Cz/bmoNutPdX2UKGgGR0CdoJjQAuIzaAdN6ANoCEdAs/4IpnYg73V9lChoBkdAnO69CJGe+WgHTegDaAhHQLQDPz4k/r11fZQoaAZHQJyz8xJul41oB03oA2gIR0C0A8DCLuQZdX2UKGgGR0CaW/DoyKvWaAdN6ANoCEdAtAUcDV6NVHV9lChoBkdAnIc32/SH/WgHTegDaAhHQLQFaRAbADd1fZQoaAZHQJzZFQCSzPdoB03oA2gIR0C0DD8S5AhTdX2UKGgGR0Ccet1YQrc1aAdN6ANoCEdAtAy5ZpztC3V9lChoBkdAlo2nzg/C7GgHTegDaAhHQLQOF30PH1h1fZQoaAZHQJbceXpnpStoB03oA2gIR0C0Dmk163RYdX2UKGgGR0CNKfQWN3nqaAdN6ANoCEdAtBMAfMfRu3V9lChoBkdAnI1qKxcE/2gHTegDaAhHQLQTe7QLNOd1fZQoaAZHQJdMQgV45cVoB03oA2gIR0C0FM1yJbdKdX2UKGgGR0Cb4WyZ8a4uaAdN6ANoCEdAtBUdQemvXHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88fd64acdb183d6caaeaf3584a15cb49f3d7f776de97eb61ebe1b21e559e5b21
3
+ size 56190
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5fbd88ea1ac6067943824ed4f00c06d9173dafd6bb130cc83f62a24163d6c97
3
+ size 56958
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f248de990d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f248de99160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f248de991f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f248de99280>", "_build": "<function ActorCriticPolicy._build at 0x7f248de99310>", "forward": "<function ActorCriticPolicy.forward at 0x7f248de993a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f248de99430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f248de994c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f248de99550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f248de995e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f248de99670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f248de99700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f248de96e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679221200266316867, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACLDgj+dV4U+j7dhPubRmz+ImEE/uIWBvzOR0j5ogk2/mUfhvtyunb8sooC/9az3Pkqhcj+4SZW/G02yPmmisb+xTBY9Ll+5PI4wVD5XHKQ9sxebv/WwsT6MfEu8kZ40wMTcLr+1ubW/o4eNPiPwvL+2Nwc/cshEvhakFj88Z+0+fA4cPx1Y879BDQw/cflmvncjfr1aYD6+Uvpfvhb12j+FLDw/vI+Tv+64Xz7NOxk+zJVqvscb3T7Z2iw+ss8JPtk8rb9ws7U+cAFOvx9QEMDE3C6/tbm1v6OHjT65bi0/lKZxPr7Trj6lkww+dudDP65Jdz8pzXk/ESWSPcTXZb5TJkq/54FMP4Z+Lj9DOvi/M5dePszBaj+pemy+PgyYPoqUrz7PMx0+DOBdPrlApLuRFxs/FPkjv2XqZz8p4aY+xNwuv+RQND+jh40+uW4tP9NHJT9aioM+VEZlPjsMt77JHq2+pw1gPhH0nr48vcw/sWInv6sYhT/XnJY/Yg1vv5ljgb7jXApAC4gjv6+WOT/+/oi+oclIwIAUCMDyZ66/ag1lPy6ADb/T2Y69MXOIP6Fkuz+1ubW/o4eNPrluLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABETxM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmhAUvQAAAADjiNu/AAAAAKg9br0AAAAA4IbkPwAAAAAOTBE+AAAAAOgO7z8AAAAAQQ2kPAAAAAAFl9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7uBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBv6q70AAAAAvoj5vwAAAAAz93m8AAAAAFkp2j8AAAAAW6NjuwAAAADh/vs/AAAAAPO3zr0AAAAAOlDlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAj98A8AAAAAPzE2r8AAAAAOyyKvAAAAADB/+U/AAAAAKyBOb0AAAAAkoP0PwAAAABzdYO9AAAAAL4k6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiKIM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALxJkPQAAAAAgx+W/AAAAALFcSDwAAAAArmTaPwAAAAAxn7Y9AAAAAA/26T8AAAAAIjcDvgAAAAA6c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJzQxqwhW5qMAWyUTegDjAF0lEdAs1PNoexOcnV9lChoBkdAnBD3o5ggHWgHTegDaAhHQLNUibzbvgF1fZQoaAZHQJO5YjUutfZoB03oA2gIR0CzVrNE9dNWdX2UKGgGR0CXkSgOjIq9aAdN6ANoCEdAs1c2qioKlnV9lChoBkdAl7a57HAAQ2gHTegDaAhHQLNciAI6bON1fZQoaAZHQJiCVS3solVoB03oA2gIR0CzXQk9ECvHdX2UKGgGR0CWvgavA44qaAdN6ANoCEdAs15pQKrq+3V9lChoBkdAhsyVMdtEX2gHTegDaAhHQLNetzgdfb91fZQoaAZHQIUCEgZCOWBoB03oA2gIR0CzY5WmxdIHdX2UKGgGR0CS4Ihx5s0paAdN6ANoCEdAs2RWRr8BMnV9lChoBkdAlu9Kgh8pkWgHTegDaAhHQLNmZG7z06J1fZQoaAZHQJi6jd/J/5NoB03oA2gIR0CzZuKrq+rVdX2UKGgGR0CXV9FQ2uPnaAdN6ANoCEdAs2xARvm5lXV9lChoBkdAmSVFSKm8/WgHTegDaAhHQLNsupLEk0J1fZQoaAZHQJs7Qv8IiTtoB03oA2gIR0CzbhLlq8DkdX2UKGgGR0CY5zRh+fAcaAdN6ANoCEdAs25gpSaVlnV9lChoBkdAlteRzmwJPmgHTegDaAhHQLNy7Ip6QeV1fZQoaAZHQJH80Cgbp/xoB03oA2gIR0Czc5kknkT6dX2UKGgGR0CbPAM3IdU9aAdN6ANoCEdAs3WPxusLfHV9lChoBkdAl7W6AavRq2gHTegDaAhHQLN2DOearm11fZQoaAZHQJnD1z+3pfRoB03oA2gIR0Cze82YfGModX2UKGgGR0CZq75wwTM8aAdN6ANoCEdAs3xEyO7xu3V9lChoBkdAmh5vwd8zAWgHTegDaAhHQLN9mblijL11fZQoaAZHQJvNEpH7P6doB03oA2gIR0CzfelbNbC8dX2UKGgGR0CVF22L5ylvaAdN6ANoCEdAs4Js4WDYiHV9lChoBkdAmtcVlbu+iGgHTegDaAhHQLOC6bkfcN91fZQoaAZHQIk2TNnoPkJoB03oA2gIR0CzhLz0g8r7dX2UKGgGR0CXrH9tdiUgaAdN6ANoCEdAs4UwwL3K0XV9lChoBkdAmtvVUVBUrGgHTegDaAhHQLOLZwfyPMl1fZQoaAZHQJm4CeWfK6poB03oA2gIR0Czi+cVLzwudX2UKGgGR0CXabhwVCXyaAdN6ANoCEdAs41L8vVVgnV9lChoBkdAmmAhRMvh62gHTegDaAhHQLONlqJdjXp1fZQoaAZHQJx3J2hZha1oB03oA2gIR0CzkkUbgjyGdX2UKGgGR0CaaeLq2SdOaAdN6ANoCEdAs5LFfG+9J3V9lChoBkdAnCtKyv9tM2gHTegDaAhHQLOUhy+HrQh1fZQoaAZHQJqItfXwsoVoB03oA2gIR0CzlP6ab4JvdX2UKGgGR0CYyu+lj3EiaAdN6ANoCEdAs5twE4ecQXV9lChoBkdAm/wuaz/p+2gHTegDaAhHQLOb65sj3VV1fZQoaAZHQJs5W32EkB1oB03oA2gIR0CznUNGmUGFdX2UKGgGR0CZokW0JF9baAdN6ANoCEdAs52Q+nqFAXV9lChoBkdAmnERW912aGgHTegDaAhHQLOiL/pMYdh1fZQoaAZHQJqbGE9Mbm5oB03oA2gIR0Czoqv9LpRodX2UKGgGR0CcOvcT8HfNaAdN6ANoCEdAs6Qtx5s0pHV9lChoBkdAnMfveHi3omgHTegDaAhHQLOkn8vmHQB1fZQoaAZHQJn3WdlNDdBoB03oA2gIR0CzqzN3jdYXdX2UKGgGR0CWYARNATqTaAdN6ANoCEdAs6uvYSQHRnV9lChoBkdAmpYxfKISDmgHTegDaAhHQLOtAmelKsd1fZQoaAZHQJoV/ovBacJoB03oA2gIR0CzrVEfkmx/dX2UKGgGR0CbQyEXcgyNaAdN6ANoCEdAs7Hvh73PA3V9lChoBkdAmu5SAYpDu2gHTegDaAhHQLOybeOXE611fZQoaAZHQJuAD0mMOwxoB03oA2gIR0Czs88v24/edX2UKGgGR0Cb6Te54GD+aAdN6ANoCEdAs7Q9MURFqnV9lChoBkdAleh6unuRcWgHTegDaAhHQLO7HsPrfLt1fZQoaAZHQJsh+xKQJX1oB03oA2gIR0Czu6C2phnbdX2UKGgGR0CUNEqvvBrOaAdN6ANoCEdAs70BZcLSeHV9lChoBkdAi1XzINmUW2gHTegDaAhHQLO9Tc3VCol1fZQoaAZHQJHle2y9mHxoB03oA2gIR0Czwedj5KvndX2UKGgGR0CXHUwIt16maAdN6ANoCEdAs8JlEBsAN3V9lChoBkdAmcAreZXuE2gHTegDaAhHQLPDx78ejmF1fZQoaAZHQJOaymsNlRRoB03oA2gIR0CzxBQnhKlIdX2UKGgGR0CX+pwi7kGSaAdN6ANoCEdAs8ygZbY9PnV9lChoBkdAmFP7lNlAeWgHTegDaAhHQLPNI5hScb11fZQoaAZHQJMjveCTUy5oB03oA2gIR0CzznykKu0UdX2UKGgGR0Ca7ursByS3aAdN6ANoCEdAs87L1kDp1XV9lChoBkdAmJOWRFI/aGgHTegDaAhHQLPTZ8ujASF1fZQoaAZHQJnT7tKIznBoB03oA2gIR0Cz0+MJ2MbWdX2UKGgGR0CYXdUjLSuyaAdN6ANoCEdAs9Vi0x/NJXV9lChoBkdAmrvrRWtEHGgHTegDaAhHQLPV0zu4PPN1fZQoaAZHQJmORhUipvRoB03oA2gIR0Cz3GqUeMhpdX2UKGgGR0CcIzkHlfZ3aAdN6ANoCEdAs9zijafzz3V9lChoBkdAncVw/1QIlmgHTegDaAhHQLPeOFA3T/h1fZQoaAZHQJyivbYbsGBoB03oA2gIR0Cz3ok+X7cgdX2UKGgGR0Ce1jj8k2P1aAdN6ANoCEdAs+McUmD15HV9lChoBkdAm08NZq20A2gHTegDaAhHQLPjlpu/Dcd1fZQoaAZHQJ7A9mDlHSZoB03oA2gIR0Cz5OdmpVCHdX2UKGgGR0CfCLTZg5R1aAdN6ANoCEdAs+VKjL0SRXV9lChoBkdAnndlea8Yh2gHTegDaAhHQLPsCrS3LFJ1fZQoaAZHQJ6R5J+UhV5oB03oA2gIR0Cz7IUngHeKdX2UKGgGR0CdTzgow22oaAdN6ANoCEdAs+3kfzSThnV9lChoBkdAnbKCJ9AoomgHTegDaAhHQLPuM/zJ6pp1fZQoaAZHQJ23bX+VC5VoB03oA2gIR0Cz8sBkmQbNdX2UKGgGR0CdyOzV+Zw5aAdN6ANoCEdAs/NBpVS4v3V9lChoBkdAndPs3dbgTGgHTegDaAhHQLP0mMfRu0l1fZQoaAZHQJ0dXlS0jTtoB03oA2gIR0Cz9OuX/o7ndX2UKGgGR0CdHMhYeT3ZaAdN6ANoCEdAs/vlQ3xWk3V9lChoBkdAnCesGs3hoGgHTegDaAhHQLP8Y4p+c6N1fZQoaAZHQJ6F2ACnxaxoB03oA2gIR0Cz/bmoNutPdX2UKGgGR0CdoJjQAuIzaAdN6ANoCEdAs/4IpnYg73V9lChoBkdAnO69CJGe+WgHTegDaAhHQLQDPz4k/r11fZQoaAZHQJyz8xJul41oB03oA2gIR0C0A8DCLuQZdX2UKGgGR0CaW/DoyKvWaAdN6ANoCEdAtAUcDV6NVHV9lChoBkdAnIc32/SH/WgHTegDaAhHQLQFaRAbADd1fZQoaAZHQJzZFQCSzPdoB03oA2gIR0C0DD8S5AhTdX2UKGgGR0Ccet1YQrc1aAdN6ANoCEdAtAy5ZpztC3V9lChoBkdAlo2nzg/C7GgHTegDaAhHQLQOF30PH1h1fZQoaAZHQJbceXpnpStoB03oA2gIR0C0Dmk163RYdX2UKGgGR0CNKfQWN3nqaAdN6ANoCEdAtBMAfMfRu3V9lChoBkdAnI1qKxcE/2gHTegDaAhHQLQTe7QLNOd1fZQoaAZHQJdMQgV45cVoB03oA2gIR0C0FM1yJbdKdX2UKGgGR0Cb4WyZ8a4uaAdN6ANoCEdAtBUdQemvXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98fbab34bf4ae9eeacc028a6f385d4f87962721a2afa4562a275c8a2d92893e0
3
+ size 1236741
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1957.609409201704, "std_reward": 137.70612707179512, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T11:28:25.845459"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b52fcd17e208e0349e2300ac472fdb877105b0f4cbfa068010f57ef4e83f7808
3
+ size 2136