File size: 1,450 Bytes
85306fb
6d3e9e8
 
 
85306fb
 
 
6d3e9e8
 
 
 
85306fb
 
6d3e9e8
 
 
 
 
 
 
 
 
 
 
 
85306fb
 
 
 
 
 
 
6d3e9e8
 
 
 
 
85306fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- en
- ro
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Lvxue/wmt16
metrics:
- bleu
model-index:
- name: distilled-mt5-base-pseudo-labeling
  results:
  - task:
      name: Translation
      type: translation
    dataset:
      name: Lvxue/wmt16 ro-en
      type: Lvxue/wmt16
      args: ro-en
    metrics:
    - name: Bleu
      type: bleu
      value: 24.1355
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilled-mt5-base-pseudo-labeling

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the Lvxue/wmt16 ro-en dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6487
- Bleu: 24.1355
- Gen Len: 44.1211

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0

### Training results



### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1