--- language: - my license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - malaysia-ai/malay-conversational-speech-corpus metrics: - wer model-index: - name: Whisper small Malay (4 batch size) - Gab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: malay-conversational-speech-corpus type: malaysia-ai/malay-conversational-speech-corpus args: 'config: malay, split: test' metrics: - name: Wer type: wer value: 27.394540942928042 --- # Whisper small Malay (4 batch size) - Gab This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the malay-conversational-speech-corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.7126 - Wer: 27.3945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0217 | 6.1728 | 1000 | 0.5993 | 28.8586 | | 0.0013 | 12.3457 | 2000 | 0.6816 | 28.0397 | | 0.0003 | 18.5185 | 3000 | 0.7018 | 27.8660 | | 0.0002 | 24.6914 | 4000 | 0.7126 | 27.3945 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1