Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1897.09 +/- 229.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5901371b798e8cba0dde87e7cf265538ae0479f0b7a3da7a90d8816db5752a8c
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7feaa6a7f040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feaa6a7f0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feaa6a7f160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feaa6a7f1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7feaa6a7f280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7feaa6a7f310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7feaa6a7f3a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feaa6a7f430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7feaa6a7f4c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feaa6a7f550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feaa6a7f5e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7feaa6a7f670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7feaa6a7cb80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679159384427134779,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP3glD9ULGA+BDTwPtTuez+way2/k/4BvyRY6z08Lm+/2k0wv7GSDMBlAmo/degPQEfuAb+bWgHA4lX7vexu3r/xd34+Vj3Avx/6hD0cAqk+fZhCv/bdgDwkaXE//fIOwC+jjb/8AQM/MpwAwLztoL+peza9BL6CPtic6T4SCao/fTAivzu5nb4KbQg+WYMfv4pofD4Jj28/Dv6EPRd7Qz6Hsq69e926Pyxy3T5uI4A/YdUKP/U9xD8uCl8/37oRvWm3Aj+TlNA+M9K6PbMNDkAvo42//AEDPzKcAMC87aC/OcxzP5BnVj/hFMg9c429P1xLX78jMUc/NoeOP8BrwL99rRc9M8i2PwHGVz5hCVm/HgzkPoQkbj92vpc+kSsNQISrrT/zOJC9S0MvPxUyCMBoN0+/WUezPssXYz9dHXA/L6ONv/wBAz8ynADAQZ5LP6CNgT6iLRQ9T6IEP5YhwD8ds86/5gmRPy/ndD+gKie/0eTrPeESyj5ijtI/FWpRPvGO1b6aBQbAw+ZKvqS88789l+E9NBy3v8UQYD93jPK83xNDvyvixzxnaKO+PvaYv+xZZz/8AQM/Fsn+PrztoL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACwzuo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdtu0vQAAAAAzN/O/AAAAAFvbGrwAAAAAwYv2PwAAAAAsRrs9AAAAAMge3T8AAAAA0NkNvgAAAACsMvG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXI+tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCEQiT0AAAAAxUP7vwAAAADtKI29AAAAAGtb9j8AAAAAydADPQAAAACUCeo/AAAAAMrnkb0AAAAAKlP2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6oDjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAUfuy9AAAAAJnl8b8AAAAA6YqevQAAAABzaP8/AAAAADxxqz0AAAAAPWLtPwAAAAC3JM09AAAAACWa3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvAcS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhHf5PQAAAABcA/e/AAAAAOpDML0AAAAAssfqPwAAAACAQ+a9AAAAAM1d/D8AAAAAgYbXvAAAAABk2t6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJlTc5vLowGMAWyUTegDjAF0lEdArf8wNI9TxXV9lChoBkdAm38vQ4S6D2gHTegDaAhHQK3/nzVc2R91fZQoaAZHQJx96Cz1K5FoB03oA2gIR0CuASKwIMScdX2UKGgGR0CbiM1mrbQDaAdN6ANoCEdArgIeqkuYhXV9lChoBkdAmmn+m3vx6WgHTegDaAhHQK4LhaufVZt1fZQoaAZHQJxOZeOXE61oB03oA2gIR0CuC/ZTyauwdX2UKGgGR0CfZVd6cAinaAdN6ANoCEdArg1dAE+xGHV9lChoBkdAnFvJXU6PsGgHTegDaAhHQK4OMz67/XJ1fZQoaAZHQJjaKJ40Mw1oB03oA2gIR0CuGf8PFvQ4dX2UKGgGR0CcfD9vCMxXaAdN6ANoCEdArhqqF49ovnV9lChoBkdAnMYtph4MW2gHTegDaAhHQK4cu9kBjnV1fZQoaAZHQJu48p3HJcRoB03oA2gIR0CuHZC3w1BMdX2UKGgGR0CcsXFVT72taAdN6ANoCEdAriaxwyZa3nV9lChoBkdAnH3BplBhQWgHTegDaAhHQK4nHic5Ke11fZQoaAZHQJk9iuMdcSpoB03oA2gIR0CuKIayKNyYdX2UKGgGR0Cc+YRRuTA4aAdN6ANoCEdArildXmvGInV9lChoBkdAm9h2xQizLWgHTegDaAhHQK4zfsvZh8Z1fZQoaAZHQJ9YbCVKPGRoB03oA2gIR0CuNCBL5AQhdX2UKGgGR0Cf7PtzCDVZaAdN6ANoCEdArjZZwMpgC3V9lChoBkdAnj3r/bTMJWgHTegDaAhHQK43rlK9PDZ1fZQoaAZHQI8mb8iwB5poB03oA2gIR0CuQllWn0kGdX2UKGgGR0CbL/zq8lHCaAdN6ANoCEdArkLE1uR9w3V9lChoBkdAncU1WjoIOmgHTegDaAhHQK5EN62v0RR1fZQoaAZHQJcFhl8PWhBoB03oA2gIR0CuRRNpmEoOdX2UKGgGR0CZAIabnX/YaAdN6ANoCEdArk5d5a/yoXV9lChoBkdAlvLtY8uBc2gHTegDaAhHQK5OyqABkqd1fZQoaAZHQJbNi/CZWq9oB03oA2gIR0CuUMyB06o3dX2UKGgGR0CaqwNSIgvEaAdN6ANoCEdArlIP2ys0YXV9lChoBkdAnuBMQZn+Q2gHTegDaAhHQK5d0WGh24d1fZQoaAZHQJQZVaGHpKVoB03oA2gIR0CuXkDwYtQLdX2UKGgGR0CcjIykbgjyaAdN6ANoCEdArl+ptxdY4nV9lChoBkdAnMsSaNMoMWgHTegDaAhHQK5giSK3uu11fZQoaAZHQJoLvwtrbg1oB03oA2gIR0CuabSkbgjydX2UKGgGR0CUU2vbXYlIaAdN6ANoCEdArmojowEhaHV9lChoBkdAmYGiXpnpS2gHTegDaAhHQK5rmSJ0nw51fZQoaAZHQJjtqvX9R79oB03oA2gIR0CubHSqU/wBdX2UKGgGR0CZzGEPUaybaAdN6ANoCEdArnkjs+mm+HV9lChoBkdAnkzcstkFwGgHTegDaAhHQK55ks2eg+R1fZQoaAZHQJhEqcTakARoB03oA2gIR0Cuex89GI9DdX2UKGgGR0CYBB5Gz8gqaAdN6ANoCEdArnwHaakRBnV9lChoBkdAl7goY77sOWgHTegDaAhHQK6Fav114gR1fZQoaAZHQJeJZdgOSW9oB03oA2gIR0Cuhdqv/zasdX2UKGgGR0CZnfu1WsBAaAdN6ANoCEdArodJ44ZMtnV9lChoBkdAlje5Fw1iv2gHTegDaAhHQK6IJSro4dZ1fZQoaAZHQJJCrVUdaMdoB03oA2gIR0CulBUjkdWAdX2UKGgGR0CecM8fFJg9aAdN6ANoCEdArpTDzqbBoHV9lChoBkdAmlTgeV9nb2gHTegDaAhHQK6Wu65Gz8h1fZQoaAZHQJynSaEzwc5oB03oA2gIR0Cul5TINmUXdX2UKGgGR0CY9nyHVPN3aAdN6ANoCEdArqDdB+nZTXV9lChoBkdAm4tGQ4jrzGgHTegDaAhHQK6hTG7z06J1fZQoaAZHQJx0a03Ov+xoB03oA2gIR0CuosO5rgwXdX2UKGgGR0CaofCTlkpaaAdN6ANoCEdArqOaHj6vaHV9lChoBkdAnedFwgkkbGgHTegDaAhHQK6t9C2tuDV1fZQoaAZHQJw9zb1yvLZoB03oA2gIR0CurpfeUILPdX2UKGgGR0CfGeN3W4EwaAdN6ANoCEdArrDLL0SRKnV9lChoBkdAnSi4Hs1KoWgHTegDaAhHQK6yGWMS9M91fZQoaAZHQJyRRBnjABVoB03oA2gIR0CuvEaw2VFAdX2UKGgGR0CZL9bOeJ53aAdN6ANoCEdArryydz4k/3V9lChoBkdAloGdW2gFo2gHTegDaAhHQK6+LdhRZU11fZQoaAZHQJpllhb4agpoB03oA2gIR0CuvwiXyAhCdX2UKGgGR0CgDT+jmCAdaAdN6ANoCEdArsg+4gA6uHV9lChoBkdAno8yt7rs0GgHTegDaAhHQK7It2exwAF1fZQoaAZHQKAwLbQkX1toB03oA2gIR0CuyteEIw/QdX2UKGgGR0Ccr6UmlZX/aAdN6ANoCEdArswJsdkrgHV9lChoBkdAnWOeu3c582gHTegDaAhHQK7Xp9G7SRd1fZQoaAZHQJzNpGqgh8poB03oA2gIR0Cu2BMBIWgwdX2UKGgGR0CZ9IXqJMxoaAdN6ANoCEdArtmCAhB7eHV9lChoBkdAnYCDP4VRDWgHTegDaAhHQK7aVVoYekp1fZQoaAZHQJubAtI065poB03oA2gIR0Cu44ZXU6PsdX2UKGgGR0CagPR4hUzbaAdN6ANoCEdAruPz15B1LnV9lChoBkdAnw1g3PzFuWgHTegDaAhHQK7lY5Ke05V1fZQoaAZHQJuI8An2IwdoB03oA2gIR0Cu5jeP7vXtdX2UKGgGR0CXnlL0jC53aAdN6ANoCEdArvMpujynUHV9lChoBkdAlW53ueBg/mgHTegDaAhHQK7zqQJ5VwR1fZQoaAZHQIqy9EVnEl5oB03oA2gIR0Cu9TnpB5X2dX2UKGgGR0CTESM0P6KtaAdN6ANoCEdArvYgP9UCJXV9lChoBkdAnHUjHXEqD2gHTegDaAhHQK7/cornTy91fZQoaAZHQJ2vcb4rSVpoB03oA2gIR0Cu/+Jyp71JdX2UKGgGR0CcIkw35vcaaAdN6ANoCEdArwFTl/6O53V9lChoBkdAm/Z7SVnmJWgHTegDaAhHQK8CKaJAMUh1fZQoaAZHQJkDAy2x6fJoB03oA2gIR0CvDjPBzmwJdX2UKGgGR0Cd/1eJpFkQaAdN6ANoCEdArw7iRr8BMnV9lChoBkdAlZOPGhmGumgHTegDaAhHQK8QtUdaMaV1fZQoaAZHQJ+pSYv38GdoB03oA2gIR0CvEY8/+sHTdX2UKGgGR0CY+a8bJfY0aAdN6ANoCEdArxrQuZkTYnV9lChoBkdAnq1dmHxjKGgHTegDaAhHQK8bP9deIEd1fZQoaAZHQJ8gXHU+cH5oB03oA2gIR0CvHKrV4HHFdX2UKGgGR0CgZhSBkI5YaAdN6ANoCEdArx2BXp4bCXV9lChoBkdAnpIJDzAerGgHTegDaAhHQK8oVAHmig11fZQoaAZHQJxOy3Zwn6VoB03oA2gIR0CvKQCLuQZGdX2UKGgGR0CcsDLhrFfiaAdN6ANoCEdArytEZWJaaHV9lChoBkdAnXnxltj0+WgHTegDaAhHQK8slVbzK9x1fZQoaAZHQKACL2FFlTZoB03oA2gIR0CvNozXrdFfdX2UKGgGR0CfMtuejEehaAdN6ANoCEdArzb9xXGOuXV9lChoBkdAnkp6AjIJaGgHTegDaAhHQK84asq8UVV1fZQoaAZHQJ2nNijL0SRoB03oA2gIR0CvOUhas6q9dX2UKGgGR0CccbMMZxaQaAdN6ANoCEdAr0LU7IT4+XV9lChoBkdAn5w7LyMDOmgHTegDaAhHQK9Ddc9nscB1fZQoaAZHQJyw2oegctJoB03oA2gIR0CvRYRFiKBNdX2UKGgGR0CeEHtHQQcxaAdN6ANoCEdAr0a93Y+SsHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bee83c72ff508fac612c9371b21e99a5a23a9eb888ba546f2d8b8058c7153335
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ee2a2607a70dbcab11aae6ab7137d57b031d53b30da27cb322e0a272f6e014
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feaa6a7f040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feaa6a7f0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feaa6a7f160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feaa6a7f1f0>", "_build": "<function ActorCriticPolicy._build at 0x7feaa6a7f280>", "forward": "<function ActorCriticPolicy.forward at 0x7feaa6a7f310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7feaa6a7f3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feaa6a7f430>", "_predict": "<function ActorCriticPolicy._predict at 0x7feaa6a7f4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feaa6a7f550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feaa6a7f5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feaa6a7f670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7feaa6a7cb80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679159384427134779, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP3glD9ULGA+BDTwPtTuez+way2/k/4BvyRY6z08Lm+/2k0wv7GSDMBlAmo/degPQEfuAb+bWgHA4lX7vexu3r/xd34+Vj3Avx/6hD0cAqk+fZhCv/bdgDwkaXE//fIOwC+jjb/8AQM/MpwAwLztoL+peza9BL6CPtic6T4SCao/fTAivzu5nb4KbQg+WYMfv4pofD4Jj28/Dv6EPRd7Qz6Hsq69e926Pyxy3T5uI4A/YdUKP/U9xD8uCl8/37oRvWm3Aj+TlNA+M9K6PbMNDkAvo42//AEDPzKcAMC87aC/OcxzP5BnVj/hFMg9c429P1xLX78jMUc/NoeOP8BrwL99rRc9M8i2PwHGVz5hCVm/HgzkPoQkbj92vpc+kSsNQISrrT/zOJC9S0MvPxUyCMBoN0+/WUezPssXYz9dHXA/L6ONv/wBAz8ynADAQZ5LP6CNgT6iLRQ9T6IEP5YhwD8ds86/5gmRPy/ndD+gKie/0eTrPeESyj5ijtI/FWpRPvGO1b6aBQbAw+ZKvqS88789l+E9NBy3v8UQYD93jPK83xNDvyvixzxnaKO+PvaYv+xZZz/8AQM/Fsn+PrztoL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACwzuo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdtu0vQAAAAAzN/O/AAAAAFvbGrwAAAAAwYv2PwAAAAAsRrs9AAAAAMge3T8AAAAA0NkNvgAAAACsMvG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXI+tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCEQiT0AAAAAxUP7vwAAAADtKI29AAAAAGtb9j8AAAAAydADPQAAAACUCeo/AAAAAMrnkb0AAAAAKlP2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6oDjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAUfuy9AAAAAJnl8b8AAAAA6YqevQAAAABzaP8/AAAAADxxqz0AAAAAPWLtPwAAAAC3JM09AAAAACWa3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvAcS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhHf5PQAAAABcA/e/AAAAAOpDML0AAAAAssfqPwAAAACAQ+a9AAAAAM1d/D8AAAAAgYbXvAAAAABk2t6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJlTc5vLowGMAWyUTegDjAF0lEdArf8wNI9TxXV9lChoBkdAm38vQ4S6D2gHTegDaAhHQK3/nzVc2R91fZQoaAZHQJx96Cz1K5FoB03oA2gIR0CuASKwIMScdX2UKGgGR0CbiM1mrbQDaAdN6ANoCEdArgIeqkuYhXV9lChoBkdAmmn+m3vx6WgHTegDaAhHQK4LhaufVZt1fZQoaAZHQJxOZeOXE61oB03oA2gIR0CuC/ZTyauwdX2UKGgGR0CfZVd6cAinaAdN6ANoCEdArg1dAE+xGHV9lChoBkdAnFvJXU6PsGgHTegDaAhHQK4OMz67/XJ1fZQoaAZHQJjaKJ40Mw1oB03oA2gIR0CuGf8PFvQ4dX2UKGgGR0CcfD9vCMxXaAdN6ANoCEdArhqqF49ovnV9lChoBkdAnMYtph4MW2gHTegDaAhHQK4cu9kBjnV1fZQoaAZHQJu48p3HJcRoB03oA2gIR0CuHZC3w1BMdX2UKGgGR0CcsXFVT72taAdN6ANoCEdAriaxwyZa3nV9lChoBkdAnH3BplBhQWgHTegDaAhHQK4nHic5Ke11fZQoaAZHQJk9iuMdcSpoB03oA2gIR0CuKIayKNyYdX2UKGgGR0Cc+YRRuTA4aAdN6ANoCEdArildXmvGInV9lChoBkdAm9h2xQizLWgHTegDaAhHQK4zfsvZh8Z1fZQoaAZHQJ9YbCVKPGRoB03oA2gIR0CuNCBL5AQhdX2UKGgGR0Cf7PtzCDVZaAdN6ANoCEdArjZZwMpgC3V9lChoBkdAnj3r/bTMJWgHTegDaAhHQK43rlK9PDZ1fZQoaAZHQI8mb8iwB5poB03oA2gIR0CuQllWn0kGdX2UKGgGR0CbL/zq8lHCaAdN6ANoCEdArkLE1uR9w3V9lChoBkdAncU1WjoIOmgHTegDaAhHQK5EN62v0RR1fZQoaAZHQJcFhl8PWhBoB03oA2gIR0CuRRNpmEoOdX2UKGgGR0CZAIabnX/YaAdN6ANoCEdArk5d5a/yoXV9lChoBkdAlvLtY8uBc2gHTegDaAhHQK5OyqABkqd1fZQoaAZHQJbNi/CZWq9oB03oA2gIR0CuUMyB06o3dX2UKGgGR0CaqwNSIgvEaAdN6ANoCEdArlIP2ys0YXV9lChoBkdAnuBMQZn+Q2gHTegDaAhHQK5d0WGh24d1fZQoaAZHQJQZVaGHpKVoB03oA2gIR0CuXkDwYtQLdX2UKGgGR0CcjIykbgjyaAdN6ANoCEdArl+ptxdY4nV9lChoBkdAnMsSaNMoMWgHTegDaAhHQK5giSK3uu11fZQoaAZHQJoLvwtrbg1oB03oA2gIR0CuabSkbgjydX2UKGgGR0CUU2vbXYlIaAdN6ANoCEdArmojowEhaHV9lChoBkdAmYGiXpnpS2gHTegDaAhHQK5rmSJ0nw51fZQoaAZHQJjtqvX9R79oB03oA2gIR0CubHSqU/wBdX2UKGgGR0CZzGEPUaybaAdN6ANoCEdArnkjs+mm+HV9lChoBkdAnkzcstkFwGgHTegDaAhHQK55ks2eg+R1fZQoaAZHQJhEqcTakARoB03oA2gIR0Cuex89GI9DdX2UKGgGR0CYBB5Gz8gqaAdN6ANoCEdArnwHaakRBnV9lChoBkdAl7goY77sOWgHTegDaAhHQK6Fav114gR1fZQoaAZHQJeJZdgOSW9oB03oA2gIR0Cuhdqv/zasdX2UKGgGR0CZnfu1WsBAaAdN6ANoCEdArodJ44ZMtnV9lChoBkdAlje5Fw1iv2gHTegDaAhHQK6IJSro4dZ1fZQoaAZHQJJCrVUdaMdoB03oA2gIR0CulBUjkdWAdX2UKGgGR0CecM8fFJg9aAdN6ANoCEdArpTDzqbBoHV9lChoBkdAmlTgeV9nb2gHTegDaAhHQK6Wu65Gz8h1fZQoaAZHQJynSaEzwc5oB03oA2gIR0Cul5TINmUXdX2UKGgGR0CY9nyHVPN3aAdN6ANoCEdArqDdB+nZTXV9lChoBkdAm4tGQ4jrzGgHTegDaAhHQK6hTG7z06J1fZQoaAZHQJx0a03Ov+xoB03oA2gIR0CuosO5rgwXdX2UKGgGR0CaofCTlkpaaAdN6ANoCEdArqOaHj6vaHV9lChoBkdAnedFwgkkbGgHTegDaAhHQK6t9C2tuDV1fZQoaAZHQJw9zb1yvLZoB03oA2gIR0CurpfeUILPdX2UKGgGR0CfGeN3W4EwaAdN6ANoCEdArrDLL0SRKnV9lChoBkdAnSi4Hs1KoWgHTegDaAhHQK6yGWMS9M91fZQoaAZHQJyRRBnjABVoB03oA2gIR0CuvEaw2VFAdX2UKGgGR0CZL9bOeJ53aAdN6ANoCEdArryydz4k/3V9lChoBkdAloGdW2gFo2gHTegDaAhHQK6+LdhRZU11fZQoaAZHQJpllhb4agpoB03oA2gIR0CuvwiXyAhCdX2UKGgGR0CgDT+jmCAdaAdN6ANoCEdArsg+4gA6uHV9lChoBkdAno8yt7rs0GgHTegDaAhHQK7It2exwAF1fZQoaAZHQKAwLbQkX1toB03oA2gIR0CuyteEIw/QdX2UKGgGR0Ccr6UmlZX/aAdN6ANoCEdArswJsdkrgHV9lChoBkdAnWOeu3c582gHTegDaAhHQK7Xp9G7SRd1fZQoaAZHQJzNpGqgh8poB03oA2gIR0Cu2BMBIWgwdX2UKGgGR0CZ9IXqJMxoaAdN6ANoCEdArtmCAhB7eHV9lChoBkdAnYCDP4VRDWgHTegDaAhHQK7aVVoYekp1fZQoaAZHQJubAtI065poB03oA2gIR0Cu44ZXU6PsdX2UKGgGR0CagPR4hUzbaAdN6ANoCEdAruPz15B1LnV9lChoBkdAnw1g3PzFuWgHTegDaAhHQK7lY5Ke05V1fZQoaAZHQJuI8An2IwdoB03oA2gIR0Cu5jeP7vXtdX2UKGgGR0CXnlL0jC53aAdN6ANoCEdArvMpujynUHV9lChoBkdAlW53ueBg/mgHTegDaAhHQK7zqQJ5VwR1fZQoaAZHQIqy9EVnEl5oB03oA2gIR0Cu9TnpB5X2dX2UKGgGR0CTESM0P6KtaAdN6ANoCEdArvYgP9UCJXV9lChoBkdAnHUjHXEqD2gHTegDaAhHQK7/cornTy91fZQoaAZHQJ2vcb4rSVpoB03oA2gIR0Cu/+Jyp71JdX2UKGgGR0CcIkw35vcaaAdN6ANoCEdArwFTl/6O53V9lChoBkdAm/Z7SVnmJWgHTegDaAhHQK8CKaJAMUh1fZQoaAZHQJkDAy2x6fJoB03oA2gIR0CvDjPBzmwJdX2UKGgGR0Cd/1eJpFkQaAdN6ANoCEdArw7iRr8BMnV9lChoBkdAlZOPGhmGumgHTegDaAhHQK8QtUdaMaV1fZQoaAZHQJ+pSYv38GdoB03oA2gIR0CvEY8/+sHTdX2UKGgGR0CY+a8bJfY0aAdN6ANoCEdArxrQuZkTYnV9lChoBkdAnq1dmHxjKGgHTegDaAhHQK8bP9deIEd1fZQoaAZHQJ8gXHU+cH5oB03oA2gIR0CvHKrV4HHFdX2UKGgGR0CgZhSBkI5YaAdN6ANoCEdArx2BXp4bCXV9lChoBkdAnpIJDzAerGgHTegDaAhHQK8oVAHmig11fZQoaAZHQJxOy3Zwn6VoB03oA2gIR0CvKQCLuQZGdX2UKGgGR0CcsDLhrFfiaAdN6ANoCEdArytEZWJaaHV9lChoBkdAnXnxltj0+WgHTegDaAhHQK8slVbzK9x1fZQoaAZHQKACL2FFlTZoB03oA2gIR0CvNozXrdFfdX2UKGgGR0CfMtuejEehaAdN6ANoCEdArzb9xXGOuXV9lChoBkdAnkp6AjIJaGgHTegDaAhHQK84asq8UVV1fZQoaAZHQJ2nNijL0SRoB03oA2gIR0CvOUhas6q9dX2UKGgGR0CccbMMZxaQaAdN6ANoCEdAr0LU7IT4+XV9lChoBkdAn5w7LyMDOmgHTegDaAhHQK9Ddc9nscB1fZQoaAZHQJyw2oegctJoB03oA2gIR0CvRYRFiKBNdX2UKGgGR0CeEHtHQQcxaAdN6ANoCEdAr0a93Y+SsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b39ace9de71673beb3a54a763a436f2f981f8dec598b9255aedaa8b963c85d7e
|
3 |
+
size 1082053
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1897.0928827558412, "std_reward": 229.94361817558263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T18:16:26.751451"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c44f111e6fe1e65863ca010734fb4511d7c2ffd26c0ab883e822c1e0a89efce9
|
3 |
+
size 2136
|