--- tags: - yolov5 - yolo - vision - object-detection - biology - climate library_name: yolov5 library_version: 7.0.7 inference: false model-index: - name: mbari-org/megamidwater results: - task: type: object-detection metrics: - type: precision value: 0.73555 name: mAP@0.5 license: apache-2.0 language: - en pipeline_tag: object-detection --- ### How to use - Install [yolov5](https://github.com/fcakyon/yolov5-pip): ```bash pip install -U yolov5 ``` - Load model and perform prediction: ```python import yolov5 model = yolov5.load('MBARI-org/megamidwater') # Run the yolo # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.1 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'http://dsg.mbari.org/images/dsg/external/Ctenophora/Deiopea_01.png' # perform inference results = model(img, size=1280) # print results print(results.pandas().xyxy[0]) ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 1280 --batch 16 --weights mbari-org/megamidwater --epochs 10 ```