File size: 3,013 Bytes
7b674cb
 
ca4e94b
 
 
 
 
 
7b674cb
 
ca4e94b
7b674cb
ca4e94b
7b674cb
 
 
 
 
 
 
ca4e94b
 
 
 
7b674cb
 
 
 
ca4e94b
 
 
 
 
 
 
 
 
7b674cb
 
ca4e94b
7b674cb
ca4e94b
7b674cb
ca4e94b
 
 
7b674cb
ca4e94b
7b674cb
ca4e94b
 
7b674cb
ca4e94b
 
 
7b674cb
 
 
 
 
 
 
ca4e94b
 
 
 
7b674cb
 
 
 
 
 
 
ca4e94b
226d68b
 
 
 
 
 
 
 
 
 
ca4e94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b674cb
 
 
 
 
 
 
ca4e94b
7b674cb
 
 
 
 
 
 
 
 
 
 
ca4e94b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
library_name: transformers
tags:
- audio
- automatic-speech-recognition
license: mit
language:
- ar
---

# ArTST-V2 (ASR task)

ArTST model finetuned for  automatic speech recognition (speech-to-text) on QASR to improve dialectal generalization. 


### Model Description

<!-- Provide a longer summary of what this model is. -->


- **Developed by:** Speech Lab, MBZUAI
- **Model type:** SpeechT5
- **Language:** Arabic
- **Finetuned from:** [ArTST-v2 pretrained](https://github.com/mbzuai-nlp/ArTST)


## How to Get Started with the Model

```python
import soundfile as sf
from transformers import (
    SpeechT5Config,
    SpeechT5FeatureExtractor,
    SpeechT5ForSpeechToText,
    SpeechT5Processor,
    SpeechT5Tokenizer,
)


device = "cuda" if torch.cuda.is_available() else "CPU"

model_id = "mbzuai/artst-v2-asr"

tokenizer = SpeechT5Tokenizer.from_pretrained(model_id)
processor = SpeechT5Processor.from_pretrained(model_id , tokenizer=tokenizer)
model = SpeechT5ForSpeechToText.from_pretrained(model_id).to(device)

audio, sr = sf.read("audio.wav")

inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
predicted_ids = model.generate(**inputs.to(device), max_length=150)

transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription[0])
```







### Model Sources [optional]
- **Repository:** [github](https://github.com/mbzuai-nlp/ArTST)
- **Paper :** [pre-print](/)
<!-- - **Demo [optional]:** [More Information Needed] -->


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```
@misc{djanibekov2024dialectalcoveragegeneralizationarabic,
      title={Dialectal Coverage And Generalization in Arabic Speech Recognition}, 
      author={Amirbek Djanibekov and Hawau Olamide Toyin and Raghad Alshalan and Abdullah Alitr and Hanan Aldarmaki},
      year={2024},
      eprint={2411.05872},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.05872}, 
}

@inproceedings{toyin-etal-2023-artst,
    title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
    author = "Toyin, Hawau  and
      Djanibekov, Amirbek  and
      Kulkarni, Ajinkya  and
      Aldarmaki, Hanan",
    booktitle = "Proceedings of ArabicNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.arabicnlp-1.5",
    doi = "10.18653/v1/2023.arabicnlp-1.5",
    pages = "41--51",
}
```
<!-- **APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

<!-- [More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed] -->