File size: 69,120 Bytes
2cec09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MERaLiON model."""

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers.activations import ACT2FN
from transformers.cache_utils import EncoderDecoderCache, StaticCache, HybridCache
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import ModelOutput, BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)

from .configuration_meralion import MERaLiONConfig, MERaLiONSpeechConfig
from .modeling_text_decoder import MERaLiONTextForCausalLM


if is_flash_attn_2_available():
    from transformers.modeling_flash_attention_utils import _flash_attention_forward


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "MERaLiONConfig"


def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor:
    """Returns sinusoids for positional embedding"""
    if channels % 2 != 0:
        raise ValueError(
            f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels."
        )
    log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
    scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1)
    return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1)


# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
    attention_mask: torch.Tensor,
    sequence_length: int,
    target_length: int,
    dtype: torch.dtype,
    device: torch.device,
    min_dtype: float,
    cache_position: torch.Tensor,
    batch_size: int,
):
    """
    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

    Args:
        attention_mask (`torch.Tensor`):
            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
        sequence_length (`int`):
            The sequence length being processed.
        target_length (`int`):
            The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
        dtype (`torch.dtype`):
            The dtype to use for the 4D attention mask.
        device (`torch.device`):
            The device to plcae the 4D attention mask on.
        min_dtype (`float`):
            The minimum value representable with the dtype `dtype`.
        cache_position (`torch.Tensor`):
            Indices depicting the position of the input sequence tokens in the sequence.
        batch_size (`torch.Tensor`):
            Batch size.
    """
    if attention_mask is not None and attention_mask.dim() == 4:
        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
        causal_mask = attention_mask
    else:
        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                padding_mask, min_dtype
            )
    return causal_mask


class MERaLiONSpeechAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        is_causal: bool = False,
        layer_idx: Optional[int] = None,
        config: Optional[MERaLiONSpeechConfig] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.config = config

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder
        self.is_causal = is_causal

        if layer_idx is None and is_decoder:
            logger.warning_once(
                f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
                "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )
        self.layer_idx = layer_idx

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->speech
    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz)

        if past_key_value is not None:
            is_updated = past_key_value.is_updated.get(self.layer_idx)
            if is_cross_attention:
                # after the first generated id, we can subsequently re-use all key/value_states from cache
                past_key_value.is_updated[self.layer_idx] = True
                past_key_value = past_key_value.cross_attention_cache
            else:
                past_key_value = past_key_value.self_attention_cache

        # use key_value_states if cross attention
        current_states = key_value_states if key_value_states is not None else hidden_states
        if is_cross_attention and past_key_value and is_updated:
            # reuse k,v, cross_attentions
            key_states = past_key_value.key_cache[self.layer_idx]
            value_states = past_key_value.value_cache[self.layer_idx]
        else:
            key_states = self._shape(self.k_proj(current_states), -1, bsz)
            value_states = self._shape(self.v_proj(current_states), -1, bsz)
            if past_key_value is not None:
                # save all key/value_states to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_states, value_states = past_key_value.update(
                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
                )

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_output = torch.matmul(attn_probs, value_states)

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)
        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights, past_key_value


class MERaLiONSpeechFlashAttention2(MERaLiONSpeechAttention):
    """
    MERaLiONSpeech flash attention module. This module inherits from `MERaLiONSpeechAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if isinstance(past_key_value, StaticCache):
            raise ValueError(
                "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. "
                "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers"
            )
        # SpeechFlashAttention2 attention does not support output_attentions
        if output_attentions:
            raise ValueError("SpeechFlashAttention2 attention does not support output_attentions")

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim))

        if past_key_value is not None:
            is_updated = past_key_value.is_updated.get(self.layer_idx)
            if is_cross_attention:
                # after the first generated id, we can subsequently re-use all key/value_states from cache
                past_key_value.is_updated[self.layer_idx] = True
                past_key_value = past_key_value.cross_attention_cache
            else:
                past_key_value = past_key_value.self_attention_cache

        # use key_value_states if cross attention
        current_states = key_value_states if key_value_states is not None else hidden_states
        if is_cross_attention and past_key_value and is_updated:
            # reuse k,v, cross_attentions
            key_states = past_key_value.key_cache[self.layer_idx]
            value_states = past_key_value.value_cache[self.layer_idx]
        else:
            key_states = self._shape(self.k_proj(current_states), -1, bsz)
            value_states = self._shape(self.v_proj(current_states), -1, bsz)
            if past_key_value is not None:
                # save all key/value_states to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_states, value_states = past_key_value.update(
                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
                )

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]
        #  We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        causal_mask = attention_mask
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (LlamaRMSNorm handles it correctly)

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = _flash_attention_forward(
            query_states,
            key_states,
            value_states,
            causal_mask,
            tgt_len,
            dropout=self.dropout if self.training else 0.0,
            is_causal=self.is_causal,
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
        )

        attn_output = attn_output.reshape(bsz, tgt_len, -1)
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class MERaLiONSpeechSdpaAttention(MERaLiONSpeechAttention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""
        if output_attentions or layer_head_mask is not None:
            # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "MERaLiONSpeechModel is using MERaLiONSpeechSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
                ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states,
                key_value_states=key_value_states,
                past_key_value=past_key_value,
                attention_mask=attention_mask,
                layer_head_mask=layer_head_mask,
                output_attentions=output_attentions,
                cache_position=cache_position,
            )

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)

        if past_key_value is not None:
            is_updated = past_key_value.is_updated.get(self.layer_idx)
            if is_cross_attention:
                # after the first generated id, we can subsequently re-use all key/value_states from cache
                past_key_value.is_updated[self.layer_idx] = True
                past_key_value = past_key_value.cross_attention_cache
            else:
                past_key_value = past_key_value.self_attention_cache

        # use key_value_states if cross attention
        current_states = key_value_states if key_value_states is not None else hidden_states
        if is_cross_attention and past_key_value and is_updated:
            # reuse k,v, cross_attentions
            key_states = past_key_value.key_cache[self.layer_idx]
            value_states = past_key_value.value_cache[self.layer_idx]
        else:
            key_states = self._shape(self.k_proj(current_states), -1, bsz)
            value_states = self._shape(self.v_proj(current_states), -1, bsz)
            if past_key_value is not None:
                # save all key/value_states to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_states, value_states = past_key_value.update(
                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
                )

        causal_mask = attention_mask
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
        is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False

        # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
        # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, None, past_key_value


MERALION_SPEECH_ATTENTION_CLASSES = {
    "eager": MERaLiONSpeechAttention,
    "flash_attention_2": MERaLiONSpeechFlashAttention2,
    "sdpa": MERaLiONSpeechSdpaAttention,
}


# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech, MBART->WHISPER
class MERaLiONSpeechEncoderLayer(nn.Module):
    def __init__(self, config: MERaLiONSpeechConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = MERALION_SPEECH_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class MERaLiONSpeechPreTrainedModel(PreTrainedModel):
    config_class = MERaLiONSpeechConfig
    base_model_prefix = "model"
    main_input_name = "input_features"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MERaLiONSpeechEncoderLayer", "MERaLiONSpeechDecoderLayer"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, MERaLiONSpeechEncoder):
            with torch.no_grad():
                embed_positions = module.embed_positions.weight
                embed_positions.copy_(sinusoids(*embed_positions.shape))

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers
        """
        input_lengths = (input_lengths - 1) // 2 + 1

        return input_lengths


MERALION_SPEECH_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`MERaLiONSpeechConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

MERALION_SPEECH_INPUTS_DOCSTRING = r"""
    Args:
        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
            tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`]
        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in
            `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`SpeechTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            Speech uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.

            If you want to change padding behavior, you should read
            [`modeling_speech._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART
            paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are
            four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and
            in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or
            when `config.use_cache=True`

            Two formats are allowed:
            - An [`~cache_utils.EncoderDecoderCache`] instance;
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache
            in the correct position and to infer the complete sequence length.
"""

MERALION_SPEECH_ENCODER_INPUTS_DOCSTRING = r"""
    Args:
        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
            tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`]
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class MERaLiONSpeechEncoder(MERaLiONSpeechPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`MERaLiONSpeechEncoderLayer`].

    Args:
        config: MERaLiONSpeechConfig
    """

    def __init__(self, config: MERaLiONSpeechConfig):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.num_mel_bins = config.num_mel_bins
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_source_positions
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
        self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)

        self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
        self.embed_positions.requires_grad_(False)

        self.layers = nn.ModuleList([MERaLiONSpeechEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def _freeze_parameters(self):
        for param in self.parameters():
            param.requires_grad = False
        self._requires_grad = False

    def get_input_embeddings(self) -> nn.Module:
        return self.conv1

    def set_input_embeddings(self, value: nn.Module):
        self.conv1 = value

    def forward(
        self,
        input_features,
        attention_mask=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
                Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
                obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
                `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
                `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
                and conversion into a tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`]
            attention_mask (`torch.Tensor`)`, *optional*):
                Speech does not support masking of the `input_features`, this argument is preserved for compatibility,
                but it is not used. By default the silence in the input log mel spectrogram are ignored.
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """

        expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
        if input_features.shape[-1] != expected_seq_length:
            raise ValueError(
                f"Speech expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
            )

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        inputs_embeds = nn.functional.gelu(self.conv1(input_features))
        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))

        inputs_embeds = inputs_embeds.permute(0, 2, 1)
        embed_pos = self.embed_positions.weight

        hidden_states = inputs_embeds + embed_pos
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        None,
                        (head_mask[idx] if head_mask is not None else None),
                        output_attentions,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        None,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


# copied from Qwen2AudioCausalLMOutputWithPast
@dataclass
class MERaLiONOutputWithPast(ModelOutput):
    """
    Base class for MERaLiON causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        attention_mask (`torch.FloatTensor`, *optional*):
            Attentions mask, used to update attention mask and position_ids.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    attention_mask: Optional[torch.FloatTensor] = None


MERALION_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`MERaLiONConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare MERaLiON Model outputting raw hidden-states without any specific head on top.",
    MERALION_START_DOCSTRING,
)
class MERaLiONPreTrainedModel(PreTrainedModel):
    config_class = MERaLiONConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MERaLiONSpeechEncoderLayer", "MERaLiONSpeechDecoderLayer", "MERaLiONTextDecoderLayer"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = True

    def _init_weights(self, module):
        # important: this ported version of Qwen2Audio isn't meant for training from scratch - only
        # inference and fine-tuning - so the proper init weights code has been removed
        std = self.config.init_std if hasattr(self.config, "init_std") else self.config.speech_config.init_std

        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        SDPA or not.
        """
        return self.text_decoder._supports_sdpa

class MERaLiONSpeechAudioAdaper(nn.Module):
    def __init__(
        self,
        config,
        **kwargs
    ):
        super(MERaLiONSpeechAudioAdaper, self).__init__()
        speech_audio_encoder_output_dim = config.speech_config.d_model
        llm_input_hidden_size = config.text_config.hidden_size
        speech_mlp_scale_factor = config.speech_mlp_scale_factor

        self.speech_mlp_scale_factor = speech_mlp_scale_factor
        self.mlp_adapter = nn.Sequential(
            nn.Linear(
                in_features=speech_audio_encoder_output_dim * speech_mlp_scale_factor,
                out_features=speech_audio_encoder_output_dim
            ),
            nn.SiLU(),
            nn.Dropout(0.1),
        )

        self.speech_llm_proj = nn.Sequential(
                nn.Linear(
                    speech_audio_encoder_output_dim,
                    speech_audio_encoder_output_dim * 4
                ),
                nn.SiLU(),
                nn.Dropout(0.1),

                nn.Linear(
                    speech_audio_encoder_output_dim * 4,
                    llm_input_hidden_size
                ),
            )

    def forward(self, speech_embeds, **kwargs):
        B, T, C = speech_embeds.shape
        speech_embeds = self.mlp_adapter(
            speech_embeds.reshape(
                B,
                T // self.speech_mlp_scale_factor,
                C * self.speech_mlp_scale_factor,
            )
        )
        return self.speech_llm_proj(speech_embeds)


MERALION_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        input_ids_left (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of left-padded input sequences tokens in the vocabulary. Padding will be ignored by default should you provide
            it.
        input_ids_right (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of right-padded input sequences tokens in the vocabulary. Padding will be ignored by default should you provide
            it.
        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`, *optional*):
            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
            tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        attention_mask_left (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`, *optional*):
            Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        attention_mask_right (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`, *optional*):
            Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`, *optional*):
            Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

@add_start_docstrings(
    """The MERALION model which consists of a audio backbone and a language model.""",
    MERALION_START_DOCSTRING,
)
class MERaLiONForConditionalGeneration(MERaLiONPreTrainedModel, GenerationMixin):
    def __init__(self, config: MERaLiONConfig):
        config.text_config._attn_implementation = config._attn_implementation
        config.speech_config._attn_implementation = config._attn_implementation

        super().__init__(config)

        self.speech_encoder = MERaLiONSpeechEncoder(config.speech_config)
        # self.speech_encoder = AutoModel.from_config(config.audio_config, attn_implementation=config._attn_implementation)

        self.ln_speech = nn.LayerNorm(config.speech_config.d_model)
        self.speech_audio_adapter = MERaLiONSpeechAudioAdaper(config)
        self.vocab_size = config.text_config.vocab_size
        self.text_decoder = MERaLiONTextForCausalLM(config.text_config)
        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        self._padding_side = "left"  # set it to left by default, user can use setter to change padding_sides
        self.post_init()

    @property
    def padding_side(self):
        return self._padding_side

    @padding_side.setter
    def padding_side(self, padding_side: str):
        if padding_side not in ["left", "right"]:
            raise ValueError(f"{padding_side} is not `left` or `right`.")
        self._padding_side = padding_side

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
    def get_input_embeddings(self):
        return self.text_decoder.get_input_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
    def set_input_embeddings(self, value):
        self.text_decoder.set_input_embeddings(value)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
    def get_output_embeddings(self):
        return self.text_decoder.get_output_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
    def set_output_embeddings(self, new_embeddings):
        self.text_decoder.set_output_embeddings(new_embeddings)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
    def set_decoder(self, decoder):
        self.text_decoder.set_decoder(decoder)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
    def get_decoder(self):
        return self.text_decoder.get_decoder()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
    def tie_weights(self):
        return self.text_decoder.tie_weights()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.text_decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _get_multimodal_input_embeds(
        self,
        input_ids_left,
        input_ids_right,
        attention_mask_left,
        attention_mask_right,
        speech_audio_contexts_embeds,
        speech_audio_contexts_atts,
    ):
        input_embeds_left = self.text_decoder.base_model.embed_tokens(input_ids_left)
        input_embeds_right = self.text_decoder.base_model.embed_tokens(input_ids_right)

        multimodal_embeds = torch.cat(
            [
                input_embeds_left,
                speech_audio_contexts_embeds,
                input_embeds_right,
            ],
            dim=1,
        )

        multimodal_attention_mask = torch.cat(
            [
                attention_mask_left,
                speech_audio_contexts_atts,
                attention_mask_right,
            ],
            dim=1,
        )
        return multimodal_embeds, multimodal_attention_mask

    @add_start_docstrings_to_model_forward(MERALION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=MERaLiONOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        input_features: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        feature_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MERaLiONOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:
        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        speech_encoder_device = self.speech_encoder.device

        if input_features is not None:
            input_features = input_features.to(speech_encoder_device)
            feature_attention_mask = feature_attention_mask.to(speech_encoder_device)

            if inputs_embeds is None:
                speech_contexts_embeds = self.speech_encoder(input_features, attention_mask=feature_attention_mask).last_hidden_state
                speech_contexts_embeds = self.ln_speech(speech_contexts_embeds)
                speech_audio_contexts_embeds = self.speech_audio_adapter(speech_contexts_embeds)

                inputs_embeds = self.text_decoder.base_model.embed_tokens(input_ids)

                speech_mask = (input_ids == self.config.speech_token_index).unsqueeze(-1)
                speech_mask = speech_mask.expand_as(inputs_embeds).to(inputs_embeds.device)

                inputs_embeds = inputs_embeds.masked_scatter(speech_mask, speech_audio_contexts_embeds)

                input_ids = None

        outputs = self.text_decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            labels=labels
        )

        return outputs

    # from transformers.models.gemma2.modeling_gemma2.Gemma2ForCausalLM.prepare_inputs_for_generation
    def prepare_inputs_for_generation(
        self,
        input_ids,
        attention_mask=None,
        input_features=None,
        feature_attention_mask=None,
        past_key_values=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=None,
        **kwargs,
    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        is_first_step = cache_position[0].item() == 0
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]
                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
                # `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
                # during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
                # batch size = 1 case, `position_ids` is already contiguous but with varying stride
                # which retriggers a capture.
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and is_first_step:
            model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
        else:
            # The clone here is for the same reason as for `position_ids`.
            model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}

        if (
            isinstance(past_key_values, HybridCache)
            and attention_mask.ndim == 2
            and not self.config._attn_implementation == "flash_attention_2"
        ):
            if model_inputs["inputs_embeds"] is not None:
                batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
                device = model_inputs["inputs_embeds"].device
            else:
                batch_size, sequence_length = model_inputs["input_ids"].shape
                device = model_inputs["input_ids"].device
            dtype = self.text_decoder.lm_head.weight.dtype
            min_dtype = torch.finfo(dtype).min
            attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
                attention_mask,
                sequence_length=sequence_length,
                target_length=past_key_values.get_max_length(),
                dtype=dtype,
                device=device,
                min_dtype=min_dtype,
                cache_position=cache_position,
                batch_size=batch_size,
            )

        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache
            }
        )

        # Input ids will only be used from the second step. 
        if is_first_step:
            model_inputs["input_features"] = input_features
            model_inputs["feature_attention_mask"] = feature_attention_mask

        return model_inputs

    def _reorder_cache(self, *args, **kwargs):
        return self.text_decoder._reorder_cache(*args, **kwargs)