Model save
Browse files- README.md +78 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: roberta-base-downstream-build_rr
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# roberta-base-downstream-build_rr
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Precision: 0.1983
|
25 |
+
- Recall: 0.3587
|
26 |
+
- F1: 0.2554
|
27 |
+
- Micro-f1: 0.2554
|
28 |
+
- Accuracy: 0.9191
|
29 |
+
- Loss: 0.2640
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 3e-05
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 1
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 20.0
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Precision | Recall | F1 | Micro-f1 | Accuracy | Validation Loss |
|
60 |
+
|:-------------:|:-----:|:----:|:---------:|:------:|:------:|:--------:|:--------:|:---------------:|
|
61 |
+
| No log | 1.0 | 62 | 0.0835 | 0.1152 | 0.0968 | 0.0968 | 0.8780 | 0.4226 |
|
62 |
+
| No log | 2.0 | 124 | 0.1537 | 0.2696 | 0.1957 | 0.1957 | 0.8931 | 0.3475 |
|
63 |
+
| No log | 3.0 | 186 | 0.1875 | 0.3391 | 0.2415 | 0.2415 | 0.9052 | 0.2912 |
|
64 |
+
| No log | 4.0 | 248 | 0.1992 | 0.3304 | 0.2486 | 0.2486 | 0.9003 | 0.2991 |
|
65 |
+
| No log | 5.0 | 310 | 0.1784 | 0.3870 | 0.2442 | 0.2442 | 0.9066 | 0.2833 |
|
66 |
+
| No log | 6.0 | 372 | 0.2206 | 0.3543 | 0.2719 | 0.2719 | 0.9148 | 0.2642 |
|
67 |
+
| No log | 7.0 | 434 | 0.2300 | 0.3630 | 0.2816 | 0.2816 | 0.9177 | 0.2584 |
|
68 |
+
| No log | 8.0 | 496 | 0.2179 | 0.3696 | 0.2742 | 0.2742 | 0.9177 | 0.2523 |
|
69 |
+
| 0.4245 | 9.0 | 558 | 0.1921 | 0.3696 | 0.2528 | 0.2528 | 0.9167 | 0.2630 |
|
70 |
+
| 0.4245 | 10.0 | 620 | 0.1983 | 0.3587 | 0.2554 | 0.2554 | 0.9191 | 0.2640 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.44.2
|
76 |
+
- Pytorch 2.4.0+cu121
|
77 |
+
- Datasets 2.21.0
|
78 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 553787380
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c73d73b42545f188304b5a8cea30207588804d1f87ebc92b1f629b8a18a99e
|
3 |
size 553787380
|