MM2157 commited on
Commit
b167e90
·
1 Parent(s): 5d9f602

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: AraBERT_token_classification_AraEval24_basic_single
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # AraBERT_token_classification_AraEval24_basic_single
18
+
19
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8309
22
+ - Precision: 0.0558
23
+ - Recall: 0.0104
24
+ - F1: 0.0175
25
+ - Accuracy: 0.8720
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | 0.5987 | 1.0 | 2830 | 0.7729 | 1.0 | 0.0002 | 0.0004 | 0.8751 |
57
+ | 0.5694 | 2.0 | 5660 | 0.7337 | 0.0 | 0.0 | 0.0 | 0.8751 |
58
+ | 0.4944 | 3.0 | 8490 | 0.7180 | 0.0 | 0.0 | 0.0 | 0.8751 |
59
+ | 0.4569 | 4.0 | 11320 | 0.7157 | 0.0683 | 0.0039 | 0.0073 | 0.8746 |
60
+ | 0.4453 | 5.0 | 14150 | 0.7393 | 0.0973 | 0.0063 | 0.0119 | 0.8745 |
61
+ | 0.3859 | 6.0 | 16980 | 0.7607 | 0.0694 | 0.0042 | 0.0080 | 0.8745 |
62
+ | 0.3847 | 7.0 | 19810 | 0.7712 | 0.0838 | 0.0074 | 0.0136 | 0.8742 |
63
+ | 0.3582 | 8.0 | 22640 | 0.7805 | 0.0462 | 0.0081 | 0.0138 | 0.8723 |
64
+ | 0.3368 | 9.0 | 25470 | 0.8114 | 0.0542 | 0.0078 | 0.0136 | 0.8727 |
65
+ | 0.3185 | 10.0 | 28300 | 0.8309 | 0.0558 | 0.0104 | 0.0175 | 0.8720 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.30.2
71
+ - Pytorch 2.3.1+cu121
72
+ - Datasets 2.20.0
73
+ - Tokenizers 0.13.3