add checkpoint
Browse files- inference.json +40 -11
inference.json
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
{
|
2 |
-
"dataset_dir": "/workspace/data/
|
|
|
|
|
3 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
|
|
4 |
"network_def": {
|
5 |
"_target_": "UNet",
|
6 |
"spatial_dims": 3,
|
@@ -34,6 +37,17 @@
|
|
34 |
"_target_": "EnsureChannelFirstd",
|
35 |
"keys": "image"
|
36 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
{
|
38 |
"_target_": "ScaleIntensityRanged",
|
39 |
"keys": "image",
|
@@ -49,17 +63,9 @@
|
|
49 |
}
|
50 |
]
|
51 |
},
|
52 |
-
"datalist": {
|
53 |
-
"_target_": "DatasetFunc",
|
54 |
-
"data": "$@dataset_dir + '/dataset.json'",
|
55 |
-
"func": "$monai.data.load_decathlon_datalist",
|
56 |
-
"is_segmentation": true,
|
57 |
-
"data_list_key": "test",
|
58 |
-
"base_dir": "@dataset_dir"
|
59 |
-
},
|
60 |
"dataset": {
|
61 |
"_target_": "Dataset",
|
62 |
-
"data": "@datalist",
|
63 |
"transform": "@preprocessing"
|
64 |
},
|
65 |
"dataloader": {
|
@@ -87,6 +93,15 @@
|
|
87 |
"keys": "pred",
|
88 |
"softmax": true
|
89 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
{
|
91 |
"_target_": "AsDiscreted",
|
92 |
"keys": "pred",
|
@@ -95,11 +110,24 @@
|
|
95 |
{
|
96 |
"_target_": "SaveImaged",
|
97 |
"keys": "pred",
|
98 |
-
"meta_keys": "
|
99 |
"output_dir": "eval"
|
100 |
}
|
101 |
]
|
102 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
"evaluator": {
|
104 |
"_target_": "SupervisedEvaluator",
|
105 |
"device": "@device",
|
@@ -107,6 +135,7 @@
|
|
107 |
"network": "@network",
|
108 |
"inferer": "@inferer",
|
109 |
"postprocessing": "@postprocessing",
|
|
|
110 |
"amp": false
|
111 |
}
|
112 |
}
|
|
|
1 |
{
|
2 |
+
"dataset_dir": "/workspace/data/Task09_Spleen",
|
3 |
+
"ckpt_path": "/workspace/data//spleen_segmentation/models/model.pt",
|
4 |
+
"log": "$__import__('logging').basicConfig(level=20)",
|
5 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
6 |
+
"datalist": "$list(sorted(__import__('glob').glob(@dataset_dir + '/imagesTs/*.nii.gz')))",
|
7 |
"network_def": {
|
8 |
"_target_": "UNet",
|
9 |
"spatial_dims": 3,
|
|
|
37 |
"_target_": "EnsureChannelFirstd",
|
38 |
"keys": "image"
|
39 |
},
|
40 |
+
{
|
41 |
+
"_target_": "Orientationd",
|
42 |
+
"keys": "image",
|
43 |
+
"axcodes": "RAS"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"_target_": "Spacingd",
|
47 |
+
"keys": "image",
|
48 |
+
"pixdim": [1.5, 1.5, 2.0],
|
49 |
+
"mode": "bilinear"
|
50 |
+
},
|
51 |
{
|
52 |
"_target_": "ScaleIntensityRanged",
|
53 |
"keys": "image",
|
|
|
63 |
}
|
64 |
]
|
65 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
"dataset": {
|
67 |
"_target_": "Dataset",
|
68 |
+
"data": "$[{'image': i} for i in @datalist]",
|
69 |
"transform": "@preprocessing"
|
70 |
},
|
71 |
"dataloader": {
|
|
|
93 |
"keys": "pred",
|
94 |
"softmax": true
|
95 |
},
|
96 |
+
{
|
97 |
+
"_target_": "Invertd",
|
98 |
+
"keys": "pred",
|
99 |
+
"transform": "@preprocessing",
|
100 |
+
"orig_keys": "image",
|
101 |
+
"meta_key_postfix": "meta_dict",
|
102 |
+
"nearest_interp": false,
|
103 |
+
"to_tensor": true
|
104 |
+
},
|
105 |
{
|
106 |
"_target_": "AsDiscreted",
|
107 |
"keys": "pred",
|
|
|
110 |
{
|
111 |
"_target_": "SaveImaged",
|
112 |
"keys": "pred",
|
113 |
+
"meta_keys": "pred_meta_dict",
|
114 |
"output_dir": "eval"
|
115 |
}
|
116 |
]
|
117 |
},
|
118 |
+
"handlers": [
|
119 |
+
{
|
120 |
+
"_target_": "CheckpointLoader",
|
121 |
+
"_disabled_": "$not __import__('os').path.exists(@ckpt_path)",
|
122 |
+
"load_path": "@ckpt_path",
|
123 |
+
"load_dict": {"model": "@network"}
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"_target_": "StatsHandler",
|
127 |
+
"_disabled_": "@log",
|
128 |
+
"iteration_log": false
|
129 |
+
}
|
130 |
+
],
|
131 |
"evaluator": {
|
132 |
"_target_": "SupervisedEvaluator",
|
133 |
"device": "@device",
|
|
|
135 |
"network": "@network",
|
136 |
"inferer": "@inferer",
|
137 |
"postprocessing": "@postprocessing",
|
138 |
+
"val_handlers": "@handlers",
|
139 |
"amp": false
|
140 |
}
|
141 |
}
|