File size: 2,103 Bytes
f1b1237 65eebf4 f1b1237 e6d8ce3 65eebf4 6fef57f c221145 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 9c73c46 38c3601 9c73c46 38c3601 9c73c46 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 8a02976 38c3601 9c73c46 38c3601 9c73c46 38c3601 9c73c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
library_name: transformers
language:
- de
base_model:
- deepset/gbert-base
pipeline_tag: token-classification
---
# Model Card for Model ID
We fine-tuned our base model for 71 epochs on the Ca dataset, epoch 62 showed the best macro average f1 score on the evaluation dataset.
## Metrics
seqeval entity-wise in evaulate
eval_AVGf1 0.7889642398534424
eval_DIAGNOSIS.f1 0.7870941224825319
eval_DIAGNOSIS.precision 0.760222310440651
eval_DIAGNOSIS.recall 0.815935236472092
eval_DIAGNOSTIC.f1 0.7870518994114499
eval_DIAGNOSTIC.precision 0.7433046993431026
eval_DIAGNOSTIC.recall 0.8362706083001705
eval_DRUG.f1 0.9196581196581196
eval_DRUG.precision 0.8951747088186356
eval_DRUG.recall 0.945518453427065
eval_MEDICAL_FINDING.f1 0.7699975080986794
eval_MEDICAL_FINDING.precision 0.7438613384689456
eval_MEDICAL_FINDING.recall 0.7980371900826446
eval_THERAPY.f1 0.6810195496164316
eval_THERAPY.precision 0.64
eval_THERAPY.recall 0.7276573241671074
eval_accuracy 0.9332097564796261
eval_f1 0.7744305184135064
eval_loss 0.5050501823425293
eval_precision 0.7437801708132195
eval_recall 0.8077155722830835
eval_runtime 50.3125
eval_samples_per_second 162.624
eval_steps_per_second 20.333
test_AVGf1 0.7491200818619402
test_DIAGNOSIS.f1 0.703534151254349
test_DIAGNOSIS.precision 0.7192062897791089
test_DIAGNOSIS.recall 0.6885304659498208
test_DIAGNOSTIC.f1 0.7718579234972678
test_DIAGNOSTIC.precision 0.7573726541554959
test_DIAGNOSTIC.recall 0.786908077994429
test_DRUG.f1 0.9024472008045592
test_DRUG.precision 0.878016960208741
test_DRUG.recall 0.9282758620689655
test_MEDICAL_FINDING.f1 0.7280362842264404
test_MEDICAL_FINDING.precision 0.6848203939745076
test_MEDICAL_FINDING.recall 0.7770738704279225
test_THERAPY.f1 0.639724849527085
test_THERAPY.precision 0.6100861008610086
test_THERAPY.recall 0.6723904202440126
test_accuracy 0.9229989726085077
test_f1 0.7327920332701502
test_loss 0.6381183862686157
test_precision 0.7048546859693045
test_recall 0.7630354091792847
test_runtime 58.5022
test_samples_per_second 162.199
test_steps_per_second 20.29
|