--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - openai/whisper-small metrics: - wer model-index: - name: Whisper Small fine tuned with comms results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: BrainHack ASR type: openai/whisper-small metrics: - name: Wer type: wer value: 0.004561529393675362 --- # Whisper Small fine tuned with comms This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the BrainHack ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0818 - Wer: 0.0046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0022 | 6.4935 | 1000 | 0.0641 | 0.0057 | | 0.0009 | 12.9870 | 2000 | 0.0705 | 0.0050 | | 0.0 | 19.4805 | 3000 | 0.0766 | 0.0045 | | 0.0 | 25.9740 | 4000 | 0.0805 | 0.0046 | | 0.0 | 32.4675 | 5000 | 0.0818 | 0.0046 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1