prompteus commited on
Commit
2b05d8a
1 Parent(s): 966e111

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -44
README.md CHANGED
@@ -9,21 +9,6 @@ datasets:
9
  metrics:
10
  - exact_match
11
  - rouge
12
- model-index:
13
- - name: calc-flan-xl
14
- results:
15
- - task:
16
- type: question-answering
17
- name: Question Answering
18
- dataset:
19
- type: gsm8k
20
- name: GSM8K
21
- split: validation
22
- metrics:
23
- - type: exact_match
24
- value: 0.495
25
- - type: rouge
26
- value: 0.655
27
  license: apache-2.0
28
  language:
29
  - en
@@ -31,15 +16,10 @@ language:
31
 
32
  # Model Card for calc-flan-xl
33
 
34
- <!-- Provide a quick summary of what the model is/does. -->
35
-
36
  This model generates reasoning chains over mathematical questions while **using an external tool: Sympy calculator**.
37
 
38
- ## Model Details
39
-
40
- ### Model Description
41
 
42
- <!-- Provide a longer summary of what this model is. -->
43
 
44
  With the idea to offload a symbolic reasoning from the stochastic language model,
45
  we train this model to utilize a calculator **for all applicable numeric operations**.
@@ -52,17 +32,19 @@ This is achieved by training the model to construct calls to the tool's API in t
52
  where `<gadget>` segment triggers a call of the tool,
53
  which is subsequently served by extending model's decoder input context by adding the output of the tool within the `<output>` segment.
54
 
55
- - **Developed by:** Anonymous
56
  - **Model type:** Autoregressive Encoder-Decoder
57
  - **Language(s):** en
58
  - **Finetuned from:** google/flan-t5-xl
59
 
60
- ### Model Sources
61
 
62
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
63
 
64
- - **Repository:** https://github.com/emnlp2023sub/gadgets
65
- - **Paper:** Stay tuned!
66
 
67
  ## Usage
68
 
@@ -71,20 +53,20 @@ Additionally to conventional generation, using Tool-augmented generation require
71
  (2) a customization of generate() method augmenting input context on-demand with the outputs of the tools.
72
 
73
  You can find these two components implemented in the attached **gadgets/model.py** and **gadgets/gadget.py** in this model's repo
74
- and the project's [home repo](https://github.com/emnlp2023sub/gadgets).
75
 
76
  After adding these two scripts to your directory, you can use the model as follows:
77
 
78
- ```python
79
-
80
  from transformers import T5ForConditionalGeneration, T5Tokenizer
81
 
82
  from gadgets.model import gadget_assisted_model
83
  from gadgets.gadget import Calculator
84
 
85
  GadgetAssistedT5 = gadget_assisted_model(T5ForConditionalGeneration)
86
- model = GadgetAssistedT5.from_pretrained("emnlp2023/calc-flan-xl")
87
- tokenizer = T5Tokenizer.from_pretrained("emnlp2023/calc-flan-xl")
 
88
 
89
  model.prepare_for_generate(tokenizer,
90
  enabled_gadgets=[Calculator()],
@@ -100,7 +82,9 @@ inputs = tokenizer(query, return_tensors="pt")
100
  output_ids = model.generate(**inputs)
101
  tokenizer.decode(output_ids[0], spaces_between_special_tokens=False)
102
  ```
 
103
  This returns:
 
104
  ```html
105
  According to the ratio, for every 5 parts that Johnson gets, Mike gets 2 parts Since Johnson got $2500,
106
  each part is therefore $2500/5 = $<gadget id="calculator">2500/5</gadget><output>500</output> 500
@@ -109,26 +93,17 @@ After buying the shirt he will have $1000-$200 = $<gadget id="calculator">1000-2
109
  Final result is<result>800</result></s>
110
  ```
111
 
112
- ### Out-of-Scope Usage
113
-
114
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
115
 
116
  Note that given the limited scope of the exercises' complexity in the training, this model will not work well for tasks requiring
117
  more complex algebraic operations, including equations, variables and operations outside the scope of (+-*/).
118
 
119
 
120
- ## Training Details
121
 
122
- ### Training Data
123
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
124
- This model was trained on our Calculator-augmented set of
125
 
126
- - [Calc Ape210k](https://huggingface.co/datasets/emnlp2023/Calc-ape210k) ([original Ape210k on github](https://github.com/Chenny0808/ape210k))
127
- - [Calc MathQA](https://huggingface.co/datasets/emnlp2023/Calc-math_qa) ([original MathQA on HF](https://huggingface.co/datasets/math_qa))
128
- - [Calc GSM8K](https://huggingface.co/datasets/emnlp2023/Calc-gsm8k) ([original GSM8K on HF](https://huggingface.co/datasets/gsm8k))
129
- - [Calc Aqua-RAT](https://huggingface.co/datasets/emnlp2023/Calc-aqua_rat) ([original Aqua-RAT on HF](https://huggingface.co/datasets/aqua_rat))
130
-
131
- in a standard auto-regressive setup i.e. for a conditional next-token prediction with teacher-forced prefix.
132
 
133
  ## Cite
134
 
 
9
  metrics:
10
  - exact_match
11
  - rouge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  license: apache-2.0
13
  language:
14
  - en
 
16
 
17
  # Model Card for calc-flan-xl
18
 
 
 
19
  This model generates reasoning chains over mathematical questions while **using an external tool: Sympy calculator**.
20
 
 
 
 
21
 
22
+ ## Model Description
23
 
24
  With the idea to offload a symbolic reasoning from the stochastic language model,
25
  we train this model to utilize a calculator **for all applicable numeric operations**.
 
32
  where `<gadget>` segment triggers a call of the tool,
33
  which is subsequently served by extending model's decoder input context by adding the output of the tool within the `<output>` segment.
34
 
35
+ - **Developed by:** Calcformer team
36
  - **Model type:** Autoregressive Encoder-Decoder
37
  - **Language(s):** en
38
  - **Finetuned from:** google/flan-t5-xl
39
 
 
40
 
41
+ ## Sources
42
+
43
+ - **Repository:** <https://github.com/prompteus/calc-x>
44
+ - **Paper:** <https://arxiv.org/abs/2305.15017>
45
+ - [**Calcformer model family on HF**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5)
46
+ - [**Calc-X dataset collection on HF**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483)
47
 
 
 
48
 
49
  ## Usage
50
 
 
53
  (2) a customization of generate() method augmenting input context on-demand with the outputs of the tools.
54
 
55
  You can find these two components implemented in the attached **gadgets/model.py** and **gadgets/gadget.py** in this model's repo
56
+ and the project's [home repo](https://github.com/prompteus/calc-x).
57
 
58
  After adding these two scripts to your directory, you can use the model as follows:
59
 
60
+ ```python3
 
61
  from transformers import T5ForConditionalGeneration, T5Tokenizer
62
 
63
  from gadgets.model import gadget_assisted_model
64
  from gadgets.gadget import Calculator
65
 
66
  GadgetAssistedT5 = gadget_assisted_model(T5ForConditionalGeneration)
67
+ model_name = "MU-NLPC/calcformer-flan-xl"
68
+ model = GadgetAssistedT5.from_pretrained(model_name)
69
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
70
 
71
  model.prepare_for_generate(tokenizer,
72
  enabled_gadgets=[Calculator()],
 
82
  output_ids = model.generate(**inputs)
83
  tokenizer.decode(output_ids[0], spaces_between_special_tokens=False)
84
  ```
85
+
86
  This returns:
87
+
88
  ```html
89
  According to the ratio, for every 5 parts that Johnson gets, Mike gets 2 parts Since Johnson got $2500,
90
  each part is therefore $2500/5 = $<gadget id="calculator">2500/5</gadget><output>500</output> 500
 
93
  Final result is<result>800</result></s>
94
  ```
95
 
96
+ ## Out-of-Scope Usage
 
 
97
 
98
  Note that given the limited scope of the exercises' complexity in the training, this model will not work well for tasks requiring
99
  more complex algebraic operations, including equations, variables and operations outside the scope of (+-*/).
100
 
101
 
102
+ ## Training
103
 
104
+ This model was trained on [Calc-X](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483), a collection of math problem datasets which we converted into CoT with calculator interactions.
105
+ We used a standard auto-regressive transformer training, i.e. a conditional next-token prediction with cross-entropy loss. For more detail about data, training or evaluation, see the [Calc-X and Calcformers paper](https://arxiv.org/abs/2305.15017).
 
106
 
 
 
 
 
 
 
107
 
108
  ## Cite
109