ppo-LunarLander-v2 / config.json
MY11111111's picture
hi
ceceff1 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x794b1fc9b400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x794b1fc9b490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x794b1fc9b520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x794b1fc9b5b0>", "_build": "<function ActorCriticPolicy._build at 0x794b1fc9b640>", "forward": "<function ActorCriticPolicy.forward at 0x794b1fc9b6d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x794b1fc9b760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x794b1fc9b7f0>", "_predict": "<function ActorCriticPolicy._predict at 0x794b1fc9b880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x794b1fc9b910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x794b1fc9b9a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x794b1fc9ba30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x794b1fc33580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 9424, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710472077144727896, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1i8zy8Qqg/GAJvPp9VrL4KM/S7NhPKPAAAAAAAAAAA4KgFvgfVuz9n98q+nSMavvDBo72+9G69AAAAAAAAAADNqpm8G9usPw9wQb7EnJO+154LPVYHdD0AAAAAAAAAAJMjKz7frVw/apk0O31pOr/GeJ4+sLrsvAAAAAAAAAAAgKrXPkjUtj0/7gC+r5RSvyr9z7yCHKo+AACAPwAAAACaExI9fHS0P0+/AD6EfjS+ct2LvOg3hT0AAAAAAAAAAC02oT54V0w/2q8zvjRoRr+NUv8+0iJMPQAAAAAAAAAAbWuoPgLIhj9AQNg+bHT2vh6B8L3W/Pq7AAAAAAAAAABgKUw+O1K4vEagST84iga/iqwGPZrDdb4AAIA/AACAP5r+Jb0UR6U/ggmdvjuDBL958Dc8HY8CvQAAAAAAAAAAUwcrvhr9sj/qY+6+gOS/vLCiHL1AhL+9AAAAAAAAAABzfrO+1mUyPZOnPz6MvWw8t2KRvy5fW74AAIA/AAAAAK0mHT8W6yo9k0HqOe0wejlThWA9io2YOAAAgD8AAIA/IPUWPtFskD/CSPo+gVj2vqFyx7zDGdM9AAAAAAAAAAAqh+c+vDRDPyDBoz3ntkW/WajhPrIhkjsAAAAAAAAAAD2enT5+ra4/7Uh1vScFu76uGS8/wn+BPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAcAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEoqGBWgezWMAWyUS1CMAXSUR0B8yvhKlHjIdX2UKGgGR0AjGWY4Qz1saAdLYWgIR0B8zEo3Jgb7dX2UKGgGR8AodyJ9AooeaAdLZ2gIR0B8zNuMuOCHdX2UKGgGR8BQPZaV2Rq5aAdLaGgIR0B8zOgGr0aqdX2UKGgGR8Bl/dOuaF23aAdLbWgIR0B8zUkPczqKdX2UKGgGR8BDLl3Qla8paAdLbmgIR0B8zWNgjQiSdX2UKGgGR8BwxR7IDHOsaAdLfmgIR0B8zpZeRgZ1dX2UKGgGR8A0bLqlgtvoaAdLhGgIR0B8zw+s5n14dX2UKGgGR8BB6TFl05lwaAdLimgIR0B8z54Pf8/EdX2UKGgGR8BFBSmZVn27aAdLimgIR0B8z48GLUCrdX2UKGgGR8AwqJk5IYm+aAdLmmgIR0B80PKbKA8TdX2UKGgGR8BAoPnKW9lFaAdLnGgIR0B80SOlwcYJdX2UKGgGR8BJy4+8oQWfaAdLqmgIR0B80kdxQzk7dX2UKGgGR8Ax8pmEoOQRaAdLrWgIR0B80odKdxyXdX2UKGgGR8A8QW0Z3s5XaAdLsWgIR0B80soJAt4BdX2UKGgGR0AKkqz7di2EaAdLY2gIR0B80t9jPOY6dX2UKGgGR8BedAo1DSgHaAdLt2gIR0B80zMW43FUdX2UKGgGR8BSKnSOR1YAaAdLTGgIR0B8035bhWHUdX2UKGgGR8BB5cy31BdEaAdLY2gIR0B81gflp48mdX2UKGgGR8BRQhP0qYqoaAdLT2gIR0B81sSkCV8kdX2UKGgGR8Aum4iHIp6QaAdLkGgIR0B819fYzzmPdX2UKGgGR7/nRAjY7JXAaAdLmmgIR0B82J0JWvKVdX2UKGgGR8BKInCGetjkaAdLfmgIR0B82SbRWtEHdX2UKGgGR8BeIOuvECNkaAdLuWgIR0B82oHVwxWUdX2UKGgGR8BKBDFAE+xGaAdLcmgIR0B82wosqaw2dX2UKGgGR8BQDBSDRMN+aAdLdmgIR0B82xruYx+KdX2UKGgGR8BIQ7XpW3jNaAdLb2gIR0B82y9nK4hEdX2UKGgGR8BMlDL0SRKZaAdLpmgIR0B829aLXL/0dX2UKGgGR8BXlrY9Pk7waAdLk2gIR0B83B+PRzBAdX2UKGgGR0BHKnLaEi+taAdLfWgIR0B83OHpKSPmdX2UKGgGR8BjitpItlI3aAdL0mgIR0B83XJ7sv7FdX2UKGgGR8BC0yGSIP9UaAdLj2gIR0B83fH4oJAudX2UKGgGR8BE3oQvpQk5aAdLsWgIR0B84G51/2CedX2UKGgGR8A3KRiPQv6CaAdLX2gIR0B84OPCEYfodX2UKGgGR8AxaQEZBLPEaAdLbmgIR0B84bBguyu7dX2UKGgGR8BFWx3eN1hcaAdLj2gIR0B84bOAy2x6dX2UKGgGR8BUirtqpLmIaAdLfmgIR0B84i2jO9nLdX2UKGgGR8BNM7SiM5wPaAdLVGgIR0B84sP4EfT1dX2UKGgGR8BVzwHqu8sdaAdLZGgIR0B84zrv9cbBdX2UKGgGR8BMUp4B3iaRaAdLamgIR0B84zk1dgOSdX2UKGgGR0Ai8Es8PnSwaAdLdWgIR0B853VqesgddX2UKGgGR8Azw9h7VrhzaAdLzWgIR0B8585imVJMdX2UKGgGR8BAfh6Skj5caAdLe2gIR0B86LGHYYixdX2UKGgGR8BKoVENOM2naAdLpWgIR0B86R9F4LThdX2UKGgGR8BFnCL/CIk7aAdLVWgIR0B86b1SOzY3dX2UKGgGR8BBOrE9+w1SaAdLoWgIR0B86f4qPOpsdX2UKGgGR8BO+s54nndPaAdLbmgIR0B86qmm+CbudX2UKGgGR8BT72ViWmgraAdLdmgIR0B86uzWwu/UdX2UKGgGR8BMbtu+AVfvaAdLo2gIR0B86yRGMGX5dX2UKGgGR8AXCPq9oN/faAdLWGgIR0B86z8EV32VdX2UKGgGR8BMlQiiZfD2aAdLX2gIR0B861V94NZvdX2UKGgGR8BV0R5HEuQIaAdLaWgIR0B87KBRQ79ydX2UKGgGR0A3b3rD63y7aAdL2GgIR0B87ceXAuZkdX2UKGgGR8A8Yjs2NvOyaAdLbGgIR0B88n6k690zdX2UKGgGR8BUNDS1E3KkaAdLVGgIR0B88sOf/WDpdX2UKGgGR8BcrwDzRQaaaAdLVGgIR0B88ueumrKedX2UKGgGR8AkdBYV6/qPaAdLZ2gIR0B88w0/GEPEdX2UKGgGR8BDlOvUz9CNaAdL02gIR0B89Lb/Ot4idX2UKGgGR8A4R9PUKArhaAdL0mgIR0B89KvX9R77dX2UKGgGR8BItvdEb5uZaAdLb2gIR0B89OY2Kl54dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}