MYC081 commited on
Commit
329110b
·
verified ·
1 Parent(s): aca4918

Model save

Browse files
Files changed (2) hide show
  1. README.md +66 -0
  2. generation_config.json +14 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-3B-WPO-bf16-1
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - xpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-3B-WPO-bf16-1
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="MYC081/Qwen2.5-3B-WPO-bf16-1", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+ This model was trained with XPO, a method introduced in [Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF](https://huggingface.co/papers/2405.21046).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.13.0.dev0
37
+ - Transformers: 4.46.2
38
+ - Pytorch: 2.1.2
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+ Cite XPO as:
45
+
46
+ ```bibtex
47
+ @article{jung2024binary,
48
+ title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}},
49
+ author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin},
50
+ year = 2024,
51
+ eprint = {arXiv:2405.21046}
52
+ }
53
+ ```
54
+
55
+ Cite TRL as:
56
+
57
+ ```bibtex
58
+ @misc{vonwerra2022trl,
59
+ title = {{TRL: Transformer Reinforcement Learning}},
60
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
61
+ year = 2020,
62
+ journal = {GitHub repository},
63
+ publisher = {GitHub},
64
+ howpublished = {\url{https://github.com/huggingface/trl}}
65
+ }
66
+ ```
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.2"
14
+ }