--- license: mit base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: zero-shot_text_classification_fine_tuned results: [] --- # zero-shot_text_classification_fine_tuned This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7573 - Accuracy: 0.82 - F1: 0.8207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.6738 | 1.0 | 750 | 0.8938 | 0.712 | 0.7142 | | 0.7626 | 2.0 | 1500 | 0.8021 | 0.7645 | 0.7633 | | 0.6333 | 3.0 | 2250 | 0.7307 | 0.7965 | 0.7997 | | 0.5001 | 4.0 | 3000 | 0.6905 | 0.817 | 0.8181 | | 0.3686 | 5.0 | 3750 | 0.7573 | 0.82 | 0.8207 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0