File size: 13,278 Bytes
23ab61f 2c32e80 23ab61f 2c32e80 23ab61f 2c32e80 23ab61f 2c32e80 23ab61f 2c32e80 23ab61f 2c32e80 23ab61f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#!/usr/bin/env/python3
import logging
import sys
from pathlib import Path
import os
import librosa
import torch
from torch.utils.data import DataLoader
from hyperpyyaml import load_hyperpyyaml
import speechbrain as sb
from speechbrain.utils.distributed import if_main_process, run_on_main
from jiwer import wer, cer
logger = logging.getLogger(__name__)
# Define training procedure
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
sig, self.sig_lens = batch.sig
tokens_bos, _ = batch.tokens_bos
sig, self.sig_lens = sig.to(self.device), self.sig_lens.to(self.device)
# Add waveform augmentation if specified.
if stage == sb.Stage.TRAIN:
sig, self.sig_lens = self.hparams.wav_augment(sig, self.sig_lens)
# Forward pass
encoded_outputs = self.modules.encoder_w2v2(sig.detach())
embedded_tokens = self.modules.embedding(tokens_bos)
decoder_outputs, _ = self.modules.decoder(embedded_tokens, encoded_outputs, self.sig_lens)
# Output layer for seq2seq log-probabilities
logits = self.modules.seq_lin(decoder_outputs)
predictions = {"seq_logprobs": self.hparams.log_softmax(logits)}
if self.is_ctc_active(stage):
# Output layer for ctc log-probabilities
ctc_logits = self.modules.ctc_lin(encoded_outputs)
predictions["ctc_logprobs"] = self.hparams.log_softmax(ctc_logits)
elif stage == sb.Stage.VALID:
predictions["tokens"], _, _, _ = self.hparams.greedy_search(encoded_outputs, self.sig_lens)
elif stage == sb.Stage.TEST:
predictions["tokens"], _, _, _ = self.hparams.test_search(encoded_outputs, self.sig_lens)
return predictions
def is_ctc_active(self, stage):
"""Check if CTC is currently active.
Arguments
---------
stage : sb.Stage
Currently executing stage.
"""
if stage != sb.Stage.TRAIN:
return False
current_epoch = self.hparams.epoch_counter.current
return current_epoch <= self.hparams.number_of_ctc_epochs
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
ids = batch.id
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
loss = self.hparams.nll_cost(log_probabilities=predictions["seq_logprobs"], targets=tokens_eos, length=tokens_eos_lens)
if self.is_ctc_active(stage):
# Load tokens without EOS as CTC targets
loss_ctc = self.hparams.ctc_cost(predictions["ctc_logprobs"], tokens, self.sig_lens, tokens_lens)
loss *= 1 - self.hparams.ctc_weight
loss += self.hparams.ctc_weight * loss_ctc
if stage != sb.Stage.TRAIN:
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
target_words = [words.split(" ") for words in batch.transcript]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of a epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr, new_lr = self.hparams.lr_annealing(stage_stats["WER"])
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
self.hparams.train_logger.log_stats(
stats_meta={"epoch": epoch, "lr": old_lr},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]},
min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
if if_main_process():
with open(self.hparams.test_wer_file, "w") as w:
self.wer_metric.write_stats(w)
def run_inference(
self,
dataset, # Must be obtained from the dataio_function
min_key, # We load the model with the lowest error rate
loader_kwargs, # opts for the dataloading
):
# If dataset isn't a Dataloader, we create it.
if not isinstance(dataset, DataLoader):
loader_kwargs["ckpt_prefix"] = None
dataset = self.make_dataloader(
dataset, sb.Stage.TEST, **loader_kwargs
)
self.checkpointer.recover_if_possible(min_key=min_key)
self.modules.eval() # We set the model to eval mode (remove dropout etc)
with torch.no_grad():
true_labels = []
pred_labels = []
for batch in dataset:
# Make sure that your compute_forward returns the predictions !!!
# In the case of the template, when stage = TEST, a beam search is applied
# in compute_forward().
predictions = self.compute_forward(batch, stage=sb.Stage.TEST)
pred_batch = []
predicted_words = []
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
for sent in predicted_words:
# sent = " ".join(sent)
sent = filter_repetitions(sent, 3)
sent = " ".join(sent)
pred_batch.append(sent)
pred_labels.append(pred_batch[0])
true_labels.append(batch.transcript[0])
print('WER: ', wer(true_labels, pred_labels) * 100)
print('CER: ', cer(true_labels, pred_labels) * 100)
def filter_repetitions(seq, max_repetition_length):
seq = list(seq)
output = []
max_n = len(seq) // 2
for n in range(max_n, 0, -1):
max_repetitions = max(max_repetition_length // n, 1)
# Don't need to iterate over impossible n values:
# len(seq) can change a lot during iteration
if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
continue
iterator = enumerate(seq)
# Fill first buffers:
buffers = [[next(iterator)[1]] for _ in range(n)]
for seq_index, token in iterator:
current_buffer = seq_index % n
if token != buffers[current_buffer][-1]:
# No repeat, we can flush some tokens
buf_len = sum(map(len, buffers))
flush_start = (current_buffer-buf_len) % n
# Keep n-1 tokens, but possibly mark some for removal
for flush_index in range(buf_len - buf_len%n):
if (buf_len - flush_index) > n-1:
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
else:
to_flush = None
# Here, repetitions get removed:
if (flush_index // n < max_repetitions) and to_flush is not None:
output.append(to_flush)
elif (flush_index // n >= max_repetitions) and to_flush is None:
output.append(to_flush)
buffers[current_buffer].append(token)
# At the end, final flush
current_buffer += 1
buf_len = sum(map(len, buffers))
flush_start = (current_buffer-buf_len) % n
for flush_index in range(buf_len):
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
# Here, repetitions just get removed:
if flush_index // n < max_repetitions:
output.append(to_flush)
seq = []
to_delete = 0
for token in output:
if token is None:
to_delete += 1
elif to_delete > 0:
to_delete -= 1
else:
seq.append(token)
output = []
return seq
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions.
"""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train.json"), replacements={"data_root": data_folder})
train_data = train_data.filtered_sorted(sort_key="duration")
hparams["train_dataloader_opts"]["shuffle"] = False
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "dev.json"), replacements={"data_root": data_folder})
valid_data = valid_data.filtered_sorted(sort_key="duration")
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test.json"), replacements={"data_root": data_folder})
datasets = [train_data, valid_data, test_data]
# We get the tokenizer as we need it to encode the labels when creating
# mini-batches.
tokenizer = hparams["tokenizer"]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("data_path")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(data_path):
sig, sr = librosa.load(data_path, sr=16000)
# sig = sb.dataio.dataio.read_audio(wav) # alternatively use the SpeechBrain data loading function
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("transcript")
@sb.utils.data_pipeline.provides("transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens")
def text_pipeline(transcript):
yield transcript
tokens_list = tokenizer.encode_as_ids(transcript)
yield tokens_list
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
# 4. Set output:
sb.dataio.dataset.set_output_keys(datasets, ["id", "sig", "transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens"])
return (train_data, valid_data, test_data)
if __name__ == "__main__":
# CLI:
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# here we create the datasets objects as well as tokenization and encoding
(train_data, valid_data, test_data) = dataio_prepare(hparams)
# Trainer initialization
asr_brain = ASR(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# We dynamically add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
asr_brain.tokenizer = hparams["tokenizer"]
train_dataloader_opts = hparams["train_dataloader_opts"]
valid_dataloader_opts = hparams["valid_dataloader_opts"]
# Training/validation loop
if hparams["skip_training"] == False:
print("Training...")
# Training
asr_brain.fit(
asr_brain.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=train_dataloader_opts,
valid_loader_kwargs=valid_dataloader_opts,
)
else:
# evaluate
print("Evaluating")
asr_brain.run_inference(test_data, "WER", hparams["test_dataloader_opts"])
|