|
import torch |
|
from speechbrain.inference.interfaces import Pretrained |
|
import librosa |
|
|
|
|
|
class ASR(Pretrained): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def encode_batch(self, wavs, wav_lens=None, normalize=False): |
|
wavs = wavs.to(self.device) |
|
self.wav_lens = wav_lens.to(self.device) |
|
|
|
|
|
encoded_outputs = self.mods.encoder_w2v2(wavs.detach()) |
|
|
|
tokens_bos = torch.zeros((wavs.size(0), 1), dtype=torch.long).to(self.device) |
|
embedded_tokens = self.mods.embedding(tokens_bos) |
|
decoder_outputs, _ = self.mods.decoder(embedded_tokens, encoded_outputs, self.wav_lens) |
|
|
|
|
|
predictions = self.hparams.test_search(encoded_outputs, self.wav_lens)[0] |
|
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions] |
|
|
|
return predicted_words |
|
|
|
|
|
def classify_file(self, path): |
|
|
|
waveform, sr = librosa.load(path, sr=16000) |
|
waveform = torch.tensor(waveform) |
|
|
|
|
|
batch = waveform.unsqueeze(0) |
|
rel_length = torch.tensor([1.0]) |
|
outputs = self.encode_batch(batch, rel_length) |
|
|
|
return outputs |
|
|
|
|
|
|
|
|