Porjaz's picture
Update train.py
7a48e83 verified
raw
history blame
13.4 kB
#!/usr/bin/env/python3
import logging
import sys
from pathlib import Path
import os
import librosa
import torch
from torch.utils.data import DataLoader
from hyperpyyaml import load_hyperpyyaml
import speechbrain as sb
from speechbrain.utils.distributed import if_main_process, run_on_main
from jiwer import wer, cer
logger = logging.getLogger(__name__)
# Define training procedure
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
sig, self.sig_lens = batch.sig
tokens_bos, _ = batch.tokens_bos
sig, self.sig_lens = sig.to(self.device), self.sig_lens.to(self.device)
# Add waveform augmentation if specified.
if stage == sb.Stage.TRAIN:
sig, self.sig_lens = self.hparams.wav_augment(sig, self.sig_lens)
# Forward pass
encoded_outputs = self.modules.encoder_w2v2(sig.detach())
embedded_tokens = self.modules.embedding(tokens_bos)
decoder_outputs, _ = self.modules.decoder(embedded_tokens, encoded_outputs, self.sig_lens)
# Output layer for seq2seq log-probabilities
logits = self.modules.seq_lin(decoder_outputs)
predictions = {"seq_logprobs": self.hparams.log_softmax(logits)}
if self.is_ctc_active(stage):
# Output layer for ctc log-probabilities
ctc_logits = self.modules.ctc_lin(encoded_outputs)
predictions["ctc_logprobs"] = self.hparams.log_softmax(ctc_logits)
elif stage == sb.Stage.VALID:
predictions["tokens"], _, _, _ = self.hparams.greedy_search(encoded_outputs, self.sig_lens)
elif stage == sb.Stage.TEST:
predictions["tokens"], _, _, _ = self.hparams.test_search(encoded_outputs, self.sig_lens)
return predictions
def is_ctc_active(self, stage):
"""Check if CTC is currently active.
Arguments
---------
stage : sb.Stage
Currently executing stage.
"""
if stage != sb.Stage.TRAIN:
return False
current_epoch = self.hparams.epoch_counter.current
return current_epoch <= self.hparams.number_of_ctc_epochs
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
ids = batch.id
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
loss = self.hparams.nll_cost(log_probabilities=predictions["seq_logprobs"], targets=tokens_eos, length=tokens_eos_lens)
if self.is_ctc_active(stage):
# Load tokens without EOS as CTC targets
loss_ctc = self.hparams.ctc_cost(predictions["ctc_logprobs"], tokens, self.sig_lens, tokens_lens)
loss *= 1 - self.hparams.ctc_weight
loss += self.hparams.ctc_weight * loss_ctc
if stage != sb.Stage.TRAIN:
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
target_words = [words.split(" ") for words in batch.transcript]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of a epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr, new_lr = self.hparams.lr_annealing(stage_stats["WER"])
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
self.hparams.train_logger.log_stats(
stats_meta={"epoch": epoch, "lr": old_lr},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]},
min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
if if_main_process():
with open(self.hparams.test_wer_file, "w") as w:
self.wer_metric.write_stats(w)
def run_inference(
self,
dataset, # Must be obtained from the dataio_function
min_key, # We load the model with the lowest error rate
loader_kwargs, # opts for the dataloading
):
# If dataset isn't a Dataloader, we create it.
if not isinstance(dataset, DataLoader):
loader_kwargs["ckpt_prefix"] = None
dataset = self.make_dataloader(
dataset, sb.Stage.TEST, **loader_kwargs
)
self.checkpointer.recover_if_possible(min_key=min_key)
self.modules.eval() # We set the model to eval mode (remove dropout etc)
with torch.no_grad():
true_labels = []
pred_labels = []
for batch in dataset:
# Make sure that your compute_forward returns the predictions !!!
# In the case of the template, when stage = TEST, a beam search is applied
# in compute_forward().
predictions = self.compute_forward(batch, stage=sb.Stage.TEST)
pred_batch = []
predicted_words = []
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
for sent in predicted_words:
# sent = " ".join(sent)
sent = filter_repetitions(sent, 3)
sent = " ".join(sent)
pred_batch.append(sent)
pred_labels.append(pred_batch[0])
true_labels.append(batch.transcript[0])
print('WER: ', wer(true_labels, pred_labels) * 100)
print('CER: ', cer(true_labels, pred_labels) * 100)
def filter_repetitions(seq, max_repetition_length):
seq = list(seq)
output = []
max_n = len(seq) // 2
for n in range(max_n, 0, -1):
max_repetitions = max(max_repetition_length // n, 1)
# Don't need to iterate over impossible n values:
# len(seq) can change a lot during iteration
if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
continue
iterator = enumerate(seq)
# Fill first buffers:
buffers = [[next(iterator)[1]] for _ in range(n)]
for seq_index, token in iterator:
current_buffer = seq_index % n
if token != buffers[current_buffer][-1]:
# No repeat, we can flush some tokens
buf_len = sum(map(len, buffers))
flush_start = (current_buffer-buf_len) % n
# Keep n-1 tokens, but possibly mark some for removal
for flush_index in range(buf_len - buf_len%n):
if (buf_len - flush_index) > n-1:
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
else:
to_flush = None
# Here, repetitions get removed:
if (flush_index // n < max_repetitions) and to_flush is not None:
output.append(to_flush)
elif (flush_index // n >= max_repetitions) and to_flush is None:
output.append(to_flush)
buffers[current_buffer].append(token)
# At the end, final flush
current_buffer += 1
buf_len = sum(map(len, buffers))
flush_start = (current_buffer-buf_len) % n
for flush_index in range(buf_len):
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
# Here, repetitions just get removed:
if flush_index // n < max_repetitions:
output.append(to_flush)
seq = []
to_delete = 0
for token in output:
if token is None:
to_delete += 1
elif to_delete > 0:
to_delete -= 1
else:
seq.append(token)
output = []
return seq
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions.
"""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train.json"), replacements={"data_root": data_folder})
train_data = train_data.filtered_sorted(sort_key="duration")
hparams["train_dataloader_opts"]["shuffle"] = False
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "dev.json"), replacements={"data_root": data_folder})
valid_data = valid_data.filtered_sorted(sort_key="duration")
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test.json"), replacements={"data_root": data_folder})
datasets = [train_data, valid_data, test_data]
# We get the tokenizer as we need it to encode the labels when creating
# mini-batches.
tokenizer = hparams["tokenizer"]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("data_path")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(data_path):
sig, sr = librosa.load(data_path, sr=16000)
# sig = sb.dataio.dataio.read_audio(wav) # alternatively use the SpeechBrain data loading function
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("transcript")
@sb.utils.data_pipeline.provides("transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens")
def text_pipeline(transcript):
yield transcript
tokens_list = tokenizer.encode_as_ids(transcript)
yield tokens_list
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
# 4. Set output:
sb.dataio.dataset.set_output_keys(datasets, ["id", "sig", "transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens"])
return (train_data, valid_data, test_data)
if __name__ == "__main__":
# CLI:
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# here we create the datasets objects as well as tokenization and encoding
(train_data, valid_data, test_data) = dataio_prepare(hparams)
run_on_main(hparams["pretrainer"].collect_files)
hparams["pretrainer"].load_collected()
# Trainer initialization
asr_brain = ASR(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# We dynamically add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
asr_brain.tokenizer = hparams["tokenizer"]
train_dataloader_opts = hparams["train_dataloader_opts"]
valid_dataloader_opts = hparams["valid_dataloader_opts"]
# Training/validation loop
if hparams["skip_training"] == False:
print("Training...")
# Training
asr_brain.fit(
asr_brain.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=train_dataloader_opts,
valid_loader_kwargs=valid_dataloader_opts,
)
else:
# evaluate
print("Evaluating")
asr_brain.run_inference(test_data, "WER", hparams["test_dataloader_opts"])