Upload 3 files
Browse files- 1000_unigram.model +3 -0
- hyperparams_augment.yaml +266 -0
- train_augment.py +308 -0
1000_unigram.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9554eb7aea11a6003af9d520f6d2cfdefb32225141ed8602448530b95785d74e
|
3 |
+
size 257601
|
hyperparams_augment.yaml
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Seed needs to be set at top of yaml, before objects with parameters
|
2 |
+
# are instantiated
|
3 |
+
seed: 1994
|
4 |
+
__set_seed: !apply:torch.manual_seed [!ref <seed>]
|
5 |
+
|
6 |
+
skip_training: True
|
7 |
+
|
8 |
+
output_folder: !ref output_folder_seq2seq_cv_podcast_arhiv_augmentation_128_emb_5000_vocab
|
9 |
+
output_wer_folder: !ref <output_folder>/
|
10 |
+
save_folder: !ref <output_folder>/save
|
11 |
+
train_log: !ref <output_folder>/train_log.txt
|
12 |
+
|
13 |
+
lm_folder: LM/output_folder_lm
|
14 |
+
|
15 |
+
# Data files
|
16 |
+
data_folder: "../../data/combined_data/speechbrain_splits"
|
17 |
+
|
18 |
+
wav2vec2_hub: facebook/wav2vec2-large-xlsr-53
|
19 |
+
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
|
20 |
+
|
21 |
+
# pretrained_tokenizer_path: "Tokenizer/output_folder_cv/1K_subword_unigram" # Use this for the CV model
|
22 |
+
pretrained_tokenizer_path: "Tokenizer/output_folder_cv_podcast_arhiv/5K_subword_unigram" # Use this for the CV+Podcast+Arhiv model
|
23 |
+
|
24 |
+
####################### Training Parameters ####################################
|
25 |
+
|
26 |
+
number_of_epochs: 50
|
27 |
+
number_of_ctc_epochs: 15
|
28 |
+
# batch_size: 16
|
29 |
+
# batch_size: 6 # for cv+podcast
|
30 |
+
batch_size: 6 # for cv+podcast+arhiv
|
31 |
+
label_smoothing: 0.1
|
32 |
+
lr: 0.0001
|
33 |
+
ctc_weight: 0.5
|
34 |
+
|
35 |
+
opt_class: !name:torch.optim.Adam
|
36 |
+
lr: !ref <lr>
|
37 |
+
|
38 |
+
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
39 |
+
initial_value: !ref <lr>
|
40 |
+
improvement_threshold: 0.0025
|
41 |
+
annealing_factor: 0.8
|
42 |
+
patient: 0
|
43 |
+
|
44 |
+
# Dataloader options
|
45 |
+
num_workers: 4
|
46 |
+
train_dataloader_opts:
|
47 |
+
num_workers: !ref <num_workers>
|
48 |
+
batch_size: !ref <batch_size>
|
49 |
+
|
50 |
+
valid_dataloader_opts:
|
51 |
+
num_workers: !ref <num_workers>
|
52 |
+
batch_size: !ref <batch_size>
|
53 |
+
|
54 |
+
test_dataloader_opts:
|
55 |
+
batch_size: 1
|
56 |
+
|
57 |
+
####################### Model Parameters #######################################
|
58 |
+
|
59 |
+
dropout: 0.15
|
60 |
+
wav2vec_output_dim: 1024
|
61 |
+
emb_size: 128
|
62 |
+
dec_neurons: 1024
|
63 |
+
dec_layers: 1
|
64 |
+
|
65 |
+
output_neurons: 5000
|
66 |
+
blank_index: 0
|
67 |
+
bos_index: 0
|
68 |
+
eos_index: 0
|
69 |
+
unk_index: 0
|
70 |
+
|
71 |
+
# Decoding parameters
|
72 |
+
min_decode_ratio: 0.0
|
73 |
+
max_decode_ratio: 1.0
|
74 |
+
valid_beam_size: 10
|
75 |
+
test_beam_size: 10
|
76 |
+
using_eos_threshold: True
|
77 |
+
eos_threshold: 1.5
|
78 |
+
using_max_attn_shift: True
|
79 |
+
max_attn_shift: 300
|
80 |
+
temperature: 1.0
|
81 |
+
ctc_window_size: 200
|
82 |
+
temperature_lm: 1.25
|
83 |
+
# Scoring parameters
|
84 |
+
ctc_weight_decode: 0.0
|
85 |
+
coverage_penalty: 1.5
|
86 |
+
lm_weight: 0.0
|
87 |
+
|
88 |
+
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
|
89 |
+
limit: !ref <number_of_epochs>
|
90 |
+
|
91 |
+
# Wav2vec2 encoder
|
92 |
+
encoder_w2v2: !new:speechbrain.lobes.models.huggingface_transformers.wav2vec2.Wav2Vec2
|
93 |
+
source: !ref <wav2vec2_hub>
|
94 |
+
output_norm: True
|
95 |
+
freeze: False
|
96 |
+
freeze_feature_extractor: True
|
97 |
+
save_path: !ref <wav2vec2_folder>
|
98 |
+
output_all_hiddens: False
|
99 |
+
|
100 |
+
embedding: !new:speechbrain.nnet.embedding.Embedding
|
101 |
+
num_embeddings: !ref <output_neurons>
|
102 |
+
embedding_dim: !ref <emb_size>
|
103 |
+
|
104 |
+
# Attention-based RNN decoder.
|
105 |
+
decoder: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
106 |
+
enc_dim: !ref <wav2vec_output_dim>
|
107 |
+
input_size: !ref <emb_size>
|
108 |
+
rnn_type: gru
|
109 |
+
attn_type: location
|
110 |
+
hidden_size: !ref <dec_neurons>
|
111 |
+
attn_dim: 512
|
112 |
+
num_layers: !ref <dec_layers>
|
113 |
+
scaling: 1.0
|
114 |
+
channels: 10
|
115 |
+
kernel_size: 100
|
116 |
+
re_init: True
|
117 |
+
dropout: !ref <dropout>
|
118 |
+
|
119 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
120 |
+
input_size: !ref <wav2vec_output_dim>
|
121 |
+
n_neurons: !ref <output_neurons>
|
122 |
+
|
123 |
+
seq_lin: !new:speechbrain.nnet.linear.Linear
|
124 |
+
input_size: !ref <dec_neurons>
|
125 |
+
n_neurons: !ref <output_neurons>
|
126 |
+
|
127 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
128 |
+
apply_log: True
|
129 |
+
|
130 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
131 |
+
blank_index: !ref <blank_index>
|
132 |
+
|
133 |
+
nll_cost: !name:speechbrain.nnet.losses.nll_loss
|
134 |
+
label_smoothing: 0.1
|
135 |
+
|
136 |
+
# This is the RNNLM that is used according to the Huggingface repository
|
137 |
+
# NB: It has to match the pre-trained RNNLM!!
|
138 |
+
#lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM
|
139 |
+
# output_neurons: !ref <output_neurons>
|
140 |
+
# embedding_dim: !ref <emb_size>
|
141 |
+
# activation: !name:torch.nn.LeakyReLU
|
142 |
+
# dropout: 0.0
|
143 |
+
# rnn_layers: 2
|
144 |
+
# rnn_neurons: 2048
|
145 |
+
# dnn_blocks: 1
|
146 |
+
# dnn_neurons: 512
|
147 |
+
# return_hidden: True # For inference
|
148 |
+
|
149 |
+
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
150 |
+
model_file: !ref <pretrained_tokenizer_path>/5000_unigram.model
|
151 |
+
|
152 |
+
modules:
|
153 |
+
encoder_w2v2: !ref <encoder_w2v2>
|
154 |
+
embedding: !ref <embedding>
|
155 |
+
decoder: !ref <decoder>
|
156 |
+
ctc_lin: !ref <ctc_lin>
|
157 |
+
seq_lin: !ref <seq_lin>
|
158 |
+
#lm_model: !ref <lm_model>
|
159 |
+
|
160 |
+
model: !new:torch.nn.ModuleList
|
161 |
+
- [!ref <encoder_w2v2>, !ref <embedding>, !ref <decoder>, !ref <ctc_lin>, !ref <seq_lin>]
|
162 |
+
|
163 |
+
############################## Decoding & optimiser ############################
|
164 |
+
#coverage_scorer: !new:speechbrain.decoders.scorer.CoverageScorer
|
165 |
+
# vocab_size: !ref <output_neurons>
|
166 |
+
#
|
167 |
+
#rnnlm_scorer: !new:speechbrain.decoders.scorer.RNNLMScorer
|
168 |
+
# language_model: !ref <lm_model>
|
169 |
+
# temperature: !ref <temperature_lm>
|
170 |
+
#
|
171 |
+
#scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
|
172 |
+
# full_scorers: [!ref <rnnlm_scorer>,
|
173 |
+
# !ref <coverage_scorer>]
|
174 |
+
# weights:
|
175 |
+
# rnnlm: !ref <lm_weight>
|
176 |
+
# coverage: !ref <coverage_penalty>
|
177 |
+
|
178 |
+
|
179 |
+
# Search
|
180 |
+
greedy_search: !new:speechbrain.decoders.S2SRNNGreedySearcher
|
181 |
+
embedding: !ref <embedding>
|
182 |
+
decoder: !ref <decoder>
|
183 |
+
linear: !ref <seq_lin>
|
184 |
+
bos_index: !ref <bos_index>
|
185 |
+
eos_index: !ref <eos_index>
|
186 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
187 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
188 |
+
|
189 |
+
test_search: !new:speechbrain.decoders.S2SRNNBeamSearcher
|
190 |
+
embedding: !ref <embedding>
|
191 |
+
decoder: !ref <decoder>
|
192 |
+
linear: !ref <seq_lin>
|
193 |
+
bos_index: !ref <bos_index>
|
194 |
+
eos_index: !ref <eos_index>
|
195 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
196 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
197 |
+
beam_size: !ref <test_beam_size>
|
198 |
+
eos_threshold: !ref <eos_threshold>
|
199 |
+
using_max_attn_shift: !ref <using_max_attn_shift>
|
200 |
+
max_attn_shift: !ref <max_attn_shift>
|
201 |
+
temperature: !ref <temperature>
|
202 |
+
#scorer: !ref <scorer>
|
203 |
+
|
204 |
+
|
205 |
+
############################## Augmentations ###################################
|
206 |
+
|
207 |
+
# Speed perturbation
|
208 |
+
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
|
209 |
+
orig_freq: 16000
|
210 |
+
speeds: [95, 100, 105]
|
211 |
+
|
212 |
+
# Frequency drop: randomly drops a number of frequency bands to zero.
|
213 |
+
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
|
214 |
+
drop_freq_low: 0
|
215 |
+
drop_freq_high: 1
|
216 |
+
drop_freq_count_low: 1
|
217 |
+
drop_freq_count_high: 3
|
218 |
+
drop_freq_width: 0.05
|
219 |
+
|
220 |
+
# Time drop: randomly drops a number of temporal chunks.
|
221 |
+
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
|
222 |
+
drop_length_low: 1000
|
223 |
+
drop_length_high: 2000
|
224 |
+
drop_count_low: 1
|
225 |
+
drop_count_high: 5
|
226 |
+
|
227 |
+
# Augmenter: Combines previously defined augmentations to perform data augmentation
|
228 |
+
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
|
229 |
+
concat_original: False
|
230 |
+
min_augmentations: 1
|
231 |
+
max_augmentations: 3
|
232 |
+
augment_prob: 0.5
|
233 |
+
augmentations: [
|
234 |
+
!ref <speed_perturb>,
|
235 |
+
!ref <drop_freq>,
|
236 |
+
!ref <drop_chunk>]
|
237 |
+
|
238 |
+
|
239 |
+
############################## Logging and Pretrainer ##########################
|
240 |
+
|
241 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
242 |
+
checkpoints_dir: !ref <save_folder>
|
243 |
+
recoverables:
|
244 |
+
model: !ref <model>
|
245 |
+
scheduler: !ref <lr_annealing>
|
246 |
+
counter: !ref <epoch_counter>
|
247 |
+
|
248 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
249 |
+
save_file: !ref <train_log>
|
250 |
+
|
251 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
252 |
+
|
253 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
254 |
+
split_tokens: True
|
255 |
+
|
256 |
+
|
257 |
+
# The pretrainer allows a mapping between pretrained files and instances that
|
258 |
+
# are declared in the yaml. E.g here, we will download the file lm.ckpt
|
259 |
+
# and it will be loaded into "lm" which is pointing to the <lm_model> defined
|
260 |
+
# before.
|
261 |
+
#pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
262 |
+
# collect_in: !ref <lm_folder>
|
263 |
+
# loadables:
|
264 |
+
# lm: !ref <lm_model>
|
265 |
+
# paths:
|
266 |
+
# lm: !ref <lm_folder>/save/CKPT+2024-07-19+14-16-05+00/model.ckpt
|
train_augment.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env/python3
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
import os
|
7 |
+
|
8 |
+
import librosa
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from hyperpyyaml import load_hyperpyyaml
|
13 |
+
|
14 |
+
import speechbrain as sb
|
15 |
+
from speechbrain.utils.distributed import if_main_process, run_on_main
|
16 |
+
|
17 |
+
from jiwer import wer, cer
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
# Define training procedure
|
23 |
+
class ASR(sb.Brain):
|
24 |
+
def compute_forward(self, batch, stage):
|
25 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
26 |
+
batch = batch.to(self.device)
|
27 |
+
sig, self.sig_lens = batch.sig
|
28 |
+
tokens_bos, _ = batch.tokens_bos
|
29 |
+
sig, self.sig_lens = sig.to(self.device), self.sig_lens.to(self.device)
|
30 |
+
|
31 |
+
# Add waveform augmentation if specified.
|
32 |
+
if stage == sb.Stage.TRAIN:
|
33 |
+
sig, self.sig_lens = self.hparams.wav_augment(sig, self.sig_lens)
|
34 |
+
# tokens_bos = self.hparams.wav_augment.replicate_labels(tokens_bos)
|
35 |
+
|
36 |
+
# Forward pass
|
37 |
+
encoded_outputs = self.modules.encoder_w2v2(sig.detach())
|
38 |
+
embedded_tokens = self.modules.embedding(tokens_bos)
|
39 |
+
decoder_outputs, _ = self.modules.decoder(embedded_tokens, encoded_outputs, self.sig_lens)
|
40 |
+
|
41 |
+
# Output layer for seq2seq log-probabilities
|
42 |
+
logits = self.modules.seq_lin(decoder_outputs)
|
43 |
+
predictions = {"seq_logprobs": self.hparams.log_softmax(logits)}
|
44 |
+
|
45 |
+
if self.is_ctc_active(stage):
|
46 |
+
# Output layer for ctc log-probabilities
|
47 |
+
ctc_logits = self.modules.ctc_lin(encoded_outputs)
|
48 |
+
predictions["ctc_logprobs"] = self.hparams.log_softmax(ctc_logits)
|
49 |
+
elif stage == sb.Stage.VALID:
|
50 |
+
predictions["tokens"], _, _, _ = self.hparams.greedy_search(encoded_outputs, self.sig_lens)
|
51 |
+
elif stage == sb.Stage.TEST:
|
52 |
+
predictions["tokens"], _, _, _ = self.hparams.test_search(encoded_outputs, self.sig_lens)
|
53 |
+
|
54 |
+
return predictions
|
55 |
+
|
56 |
+
|
57 |
+
def is_ctc_active(self, stage):
|
58 |
+
"""Check if CTC is currently active.
|
59 |
+
|
60 |
+
Arguments
|
61 |
+
---------
|
62 |
+
stage : sb.Stage
|
63 |
+
Currently executing stage.
|
64 |
+
"""
|
65 |
+
if stage != sb.Stage.TRAIN:
|
66 |
+
return False
|
67 |
+
current_epoch = self.hparams.epoch_counter.current
|
68 |
+
return current_epoch <= self.hparams.number_of_ctc_epochs
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
def compute_objectives(self, predictions, batch, stage):
|
73 |
+
"""Computes the loss (CTC+NLL) given predictions and targets."""
|
74 |
+
ids = batch.id
|
75 |
+
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
76 |
+
tokens, tokens_lens = batch.tokens
|
77 |
+
|
78 |
+
# if stage == sb.Stage.TRAIN:
|
79 |
+
# (tokens, tokens_lens, tokens_eos, tokens_eos_lens) = self.hparams.wav_augment.replicate_multiple_labels(tokens, tokens_lens, tokens_eos, tokens_eos_lens)
|
80 |
+
|
81 |
+
loss = self.hparams.nll_cost(log_probabilities=predictions["seq_logprobs"], targets=tokens_eos, length=tokens_eos_lens)
|
82 |
+
|
83 |
+
if self.is_ctc_active(stage):
|
84 |
+
# Load tokens without EOS as CTC targets
|
85 |
+
loss_ctc = self.hparams.ctc_cost(predictions["ctc_logprobs"], tokens, self.sig_lens, tokens_lens)
|
86 |
+
loss *= 1 - self.hparams.ctc_weight
|
87 |
+
loss += self.hparams.ctc_weight * loss_ctc
|
88 |
+
|
89 |
+
if stage != sb.Stage.TRAIN:
|
90 |
+
# for prediction in predictions["tokens"]:
|
91 |
+
# print(self.hparams.tokenizer.decode_ids(prediction))
|
92 |
+
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
93 |
+
target_words = [words.split(" ") for words in batch.transcript]
|
94 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
95 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
96 |
+
|
97 |
+
return loss
|
98 |
+
|
99 |
+
def on_stage_start(self, stage, epoch):
|
100 |
+
"""Gets called at the beginning of each epoch"""
|
101 |
+
if stage != sb.Stage.TRAIN:
|
102 |
+
self.cer_metric = self.hparams.cer_computer()
|
103 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
104 |
+
|
105 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
106 |
+
"""Gets called at the end of a epoch."""
|
107 |
+
# Compute/store important stats
|
108 |
+
stage_stats = {"loss": stage_loss}
|
109 |
+
if stage == sb.Stage.TRAIN:
|
110 |
+
self.train_stats = stage_stats
|
111 |
+
else:
|
112 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
113 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
114 |
+
|
115 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
116 |
+
if stage == sb.Stage.VALID:
|
117 |
+
old_lr, new_lr = self.hparams.lr_annealing(stage_stats["WER"])
|
118 |
+
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
|
119 |
+
self.hparams.train_logger.log_stats(
|
120 |
+
stats_meta={"epoch": epoch, "lr": old_lr},
|
121 |
+
# stats_meta={"epoch": epoch},
|
122 |
+
train_stats=self.train_stats,
|
123 |
+
valid_stats=stage_stats,
|
124 |
+
)
|
125 |
+
self.checkpointer.save_and_keep_only(
|
126 |
+
meta={"WER": stage_stats["WER"]},
|
127 |
+
min_keys=["WER"],
|
128 |
+
)
|
129 |
+
elif stage == sb.Stage.TEST:
|
130 |
+
self.hparams.train_logger.log_stats(
|
131 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
132 |
+
test_stats=stage_stats,
|
133 |
+
)
|
134 |
+
if if_main_process():
|
135 |
+
with open(self.hparams.test_wer_file, "w") as w:
|
136 |
+
self.wer_metric.write_stats(w)
|
137 |
+
|
138 |
+
def run_inference(
|
139 |
+
self,
|
140 |
+
dataset, # Must be obtained from the dataio_function
|
141 |
+
min_key, # We load the model with the lowest error rate
|
142 |
+
loader_kwargs, # opts for the dataloading
|
143 |
+
):
|
144 |
+
|
145 |
+
# If dataset isn't a Dataloader, we create it.
|
146 |
+
if not isinstance(dataset, DataLoader):
|
147 |
+
loader_kwargs["ckpt_prefix"] = None
|
148 |
+
dataset = self.make_dataloader(
|
149 |
+
dataset, sb.Stage.TEST, **loader_kwargs
|
150 |
+
)
|
151 |
+
|
152 |
+
self.checkpointer.recover_if_possible(min_key=min_key)
|
153 |
+
self.modules.eval() # We set the model to eval mode (remove dropout etc)
|
154 |
+
|
155 |
+
with torch.no_grad():
|
156 |
+
true_labels = []
|
157 |
+
pred_labels = []
|
158 |
+
#for batch in tqdm(dataset, dynamic_ncols=True):
|
159 |
+
for batch in dataset:
|
160 |
+
# Make sure that your compute_forward returns the predictions !!!
|
161 |
+
# In the case of the template, when stage = TEST, a beam search is applied
|
162 |
+
# in compute_forward().
|
163 |
+
predictions = self.compute_forward(batch, stage=sb.Stage.TEST)
|
164 |
+
|
165 |
+
pred_batch = []
|
166 |
+
predicted_words = []
|
167 |
+
|
168 |
+
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
169 |
+
for sent in predicted_words:
|
170 |
+
sent = " ".join(sent)
|
171 |
+
pred_batch.append(sent)
|
172 |
+
|
173 |
+
pred_labels.append(pred_batch[0])
|
174 |
+
true_labels.append(batch.transcript[0])
|
175 |
+
|
176 |
+
# print("True: ", batch.transcript[0])
|
177 |
+
# print("Pred: ", pred_batch[0])
|
178 |
+
# with open("predictions/predictions_arhiv.txt", "a") as f:
|
179 |
+
# f.write("True: " + batch.transcript[0] + "\n")
|
180 |
+
# f.write("Pred: " + pred_batch[0] + "\n\n")
|
181 |
+
print("True: ", batch.transcript[0])
|
182 |
+
print("Pred: ", pred_batch[0])
|
183 |
+
|
184 |
+
print('WER: ', wer(true_labels, pred_labels) * 100)
|
185 |
+
print('CER: ', cer(true_labels, pred_labels) * 100)
|
186 |
+
|
187 |
+
|
188 |
+
def dataio_prepare(hparams):
|
189 |
+
"""This function prepares the datasets to be used in the brain class.
|
190 |
+
It also defines the data processing pipeline through user-defined functions.
|
191 |
+
"""
|
192 |
+
data_folder = hparams["data_folder"]
|
193 |
+
|
194 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train_corrected.json"), replacements={"data_root": data_folder})
|
195 |
+
|
196 |
+
train_data = train_data.filtered_sorted(sort_key="duration")
|
197 |
+
hparams["train_dataloader_opts"]["shuffle"] = False
|
198 |
+
|
199 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "dev_corrected.json"), replacements={"data_root": data_folder})
|
200 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
201 |
+
|
202 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test_arhiv.json"), replacements={"data_root": data_folder})
|
203 |
+
|
204 |
+
|
205 |
+
datasets = [train_data, valid_data, test_data]
|
206 |
+
|
207 |
+
# We get the tokenizer as we need it to encode the labels when creating
|
208 |
+
# mini-batches.
|
209 |
+
tokenizer = hparams["tokenizer"]
|
210 |
+
|
211 |
+
# 2. Define audio pipeline:
|
212 |
+
@sb.utils.data_pipeline.takes("data_path")
|
213 |
+
@sb.utils.data_pipeline.provides("sig")
|
214 |
+
def audio_pipeline(data_path):
|
215 |
+
if "cv-mk" in data_path:
|
216 |
+
filename = data_path.split("clips")[1]
|
217 |
+
data_path = "/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/CV-18_MK/cv-mk/mk/clips" + filename
|
218 |
+
elif "podcast" in data_path:
|
219 |
+
filename = data_path.split("segmented_audio")[1]
|
220 |
+
data_path = "/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/podcast/audio/segmented_audio" + filename
|
221 |
+
elif "arhiv" in data_path:
|
222 |
+
filename = data_path.split("segmented_audio")[1]
|
223 |
+
data_path = "/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/arhiv/audio/segmented_audio" + filename
|
224 |
+
|
225 |
+
sig, sr = librosa.load(data_path, sr=16000)
|
226 |
+
# sig = sb.dataio.dataio.read_audio(wav)
|
227 |
+
return sig
|
228 |
+
|
229 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
230 |
+
|
231 |
+
# 3. Define text pipeline:
|
232 |
+
@sb.utils.data_pipeline.takes("transcript")
|
233 |
+
@sb.utils.data_pipeline.provides("transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens")
|
234 |
+
def text_pipeline(transcript):
|
235 |
+
yield transcript
|
236 |
+
tokens_list = tokenizer.encode_as_ids(transcript)
|
237 |
+
yield tokens_list
|
238 |
+
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
|
239 |
+
yield tokens_bos
|
240 |
+
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
|
241 |
+
yield tokens_eos
|
242 |
+
tokens = torch.LongTensor(tokens_list)
|
243 |
+
yield tokens
|
244 |
+
|
245 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
246 |
+
|
247 |
+
# 4. Set output:
|
248 |
+
sb.dataio.dataset.set_output_keys(datasets, ["id", "sig", "transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens"])
|
249 |
+
|
250 |
+
return (train_data, valid_data, test_data)
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
# CLI:
|
255 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
256 |
+
|
257 |
+
# create ddp_group with the right communication protocol
|
258 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
259 |
+
|
260 |
+
with open(hparams_file) as fin:
|
261 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
262 |
+
|
263 |
+
# Create experiment directory
|
264 |
+
sb.create_experiment_directory(
|
265 |
+
experiment_directory=hparams["output_folder"],
|
266 |
+
hyperparams_to_save=hparams_file,
|
267 |
+
overrides=overrides,
|
268 |
+
)
|
269 |
+
|
270 |
+
# here we create the datasets objects as well as tokenization and encoding
|
271 |
+
(train_data, valid_data, test_data) = dataio_prepare(hparams)
|
272 |
+
|
273 |
+
#run_on_main(hparams["pretrainer"].collect_files)
|
274 |
+
#hparams["pretrainer"].load_collected()
|
275 |
+
|
276 |
+
# Trainer initialization
|
277 |
+
asr_brain = ASR(
|
278 |
+
modules=hparams["modules"],
|
279 |
+
opt_class=hparams["opt_class"],
|
280 |
+
hparams=hparams,
|
281 |
+
run_opts=run_opts,
|
282 |
+
checkpointer=hparams["checkpointer"],
|
283 |
+
)
|
284 |
+
|
285 |
+
# We dynamically add the tokenizer to our brain class.
|
286 |
+
# NB: This tokenizer corresponds to the one used for the LM!!
|
287 |
+
asr_brain.tokenizer = hparams["tokenizer"]
|
288 |
+
train_dataloader_opts = hparams["train_dataloader_opts"]
|
289 |
+
valid_dataloader_opts = hparams["valid_dataloader_opts"]
|
290 |
+
|
291 |
+
|
292 |
+
# Training/validation loop
|
293 |
+
if hparams["skip_training"] == False:
|
294 |
+
print("Training...")
|
295 |
+
# Training
|
296 |
+
asr_brain.fit(
|
297 |
+
asr_brain.hparams.epoch_counter,
|
298 |
+
train_data,
|
299 |
+
valid_data,
|
300 |
+
train_loader_kwargs=train_dataloader_opts,
|
301 |
+
valid_loader_kwargs=valid_dataloader_opts,
|
302 |
+
)
|
303 |
+
|
304 |
+
else:
|
305 |
+
# evaluate
|
306 |
+
print("Evaluating")
|
307 |
+
asr_brain.run_inference(test_data, "WER", hparams["test_dataloader_opts"])
|
308 |
+
|