Update train.py
Browse files
train.py
CHANGED
@@ -31,7 +31,6 @@ class ASR(sb.Brain):
|
|
31 |
# Add waveform augmentation if specified.
|
32 |
if stage == sb.Stage.TRAIN:
|
33 |
sig, self.sig_lens = self.hparams.wav_augment(sig, self.sig_lens)
|
34 |
-
# tokens_bos = self.hparams.wav_augment.replicate_labels(tokens_bos)
|
35 |
|
36 |
# Forward pass
|
37 |
encoded_outputs = self.modules.encoder_w2v2(sig.detach())
|
@@ -75,9 +74,6 @@ class ASR(sb.Brain):
|
|
75 |
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
76 |
tokens, tokens_lens = batch.tokens
|
77 |
|
78 |
-
# if stage == sb.Stage.TRAIN:
|
79 |
-
# (tokens, tokens_lens, tokens_eos, tokens_eos_lens) = self.hparams.wav_augment.replicate_multiple_labels(tokens, tokens_lens, tokens_eos, tokens_eos_lens)
|
80 |
-
|
81 |
loss = self.hparams.nll_cost(log_probabilities=predictions["seq_logprobs"], targets=tokens_eos, length=tokens_eos_lens)
|
82 |
|
83 |
if self.is_ctc_active(stage):
|
@@ -87,8 +83,6 @@ class ASR(sb.Brain):
|
|
87 |
loss += self.hparams.ctc_weight * loss_ctc
|
88 |
|
89 |
if stage != sb.Stage.TRAIN:
|
90 |
-
# for prediction in predictions["tokens"]:
|
91 |
-
# print(self.hparams.tokenizer.decode_ids(prediction))
|
92 |
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
93 |
target_words = [words.split(" ") for words in batch.transcript]
|
94 |
self.wer_metric.append(ids, predicted_words, target_words)
|
@@ -118,7 +112,6 @@ class ASR(sb.Brain):
|
|
118 |
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
|
119 |
self.hparams.train_logger.log_stats(
|
120 |
stats_meta={"epoch": epoch, "lr": old_lr},
|
121 |
-
# stats_meta={"epoch": epoch},
|
122 |
train_stats=self.train_stats,
|
123 |
valid_stats=stage_stats,
|
124 |
)
|
@@ -155,7 +148,6 @@ class ASR(sb.Brain):
|
|
155 |
with torch.no_grad():
|
156 |
true_labels = []
|
157 |
pred_labels = []
|
158 |
-
#for batch in tqdm(dataset, dynamic_ncols=True):
|
159 |
for batch in dataset:
|
160 |
# Make sure that your compute_forward returns the predictions !!!
|
161 |
# In the case of the template, when stage = TEST, a beam search is applied
|
@@ -167,39 +159,84 @@ class ASR(sb.Brain):
|
|
167 |
|
168 |
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
169 |
for sent in predicted_words:
|
|
|
|
|
170 |
sent = " ".join(sent)
|
171 |
pred_batch.append(sent)
|
172 |
|
173 |
pred_labels.append(pred_batch[0])
|
174 |
true_labels.append(batch.transcript[0])
|
175 |
|
176 |
-
# print("True: ", batch.transcript[0])
|
177 |
-
# print("Pred: ", pred_batch[0])
|
178 |
-
# with open("predictions/predictions_arhiv.txt", "a") as f:
|
179 |
-
# f.write("True: " + batch.transcript[0] + "\n")
|
180 |
-
# f.write("Pred: " + pred_batch[0] + "\n\n")
|
181 |
-
print("True: ", batch.transcript[0])
|
182 |
-
print("Pred: ", pred_batch[0])
|
183 |
-
|
184 |
print('WER: ', wer(true_labels, pred_labels) * 100)
|
185 |
print('CER: ', cer(true_labels, pred_labels) * 100)
|
186 |
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
def dataio_prepare(hparams):
|
189 |
"""This function prepares the datasets to be used in the brain class.
|
190 |
It also defines the data processing pipeline through user-defined functions.
|
191 |
"""
|
192 |
data_folder = hparams["data_folder"]
|
193 |
|
194 |
-
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "
|
195 |
-
|
196 |
train_data = train_data.filtered_sorted(sort_key="duration")
|
197 |
hparams["train_dataloader_opts"]["shuffle"] = False
|
198 |
|
199 |
-
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "
|
200 |
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
201 |
|
202 |
-
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "
|
203 |
|
204 |
|
205 |
datasets = [train_data, valid_data, test_data]
|
@@ -212,18 +249,8 @@ def dataio_prepare(hparams):
|
|
212 |
@sb.utils.data_pipeline.takes("data_path")
|
213 |
@sb.utils.data_pipeline.provides("sig")
|
214 |
def audio_pipeline(data_path):
|
215 |
-
if "cv-mk" in data_path:
|
216 |
-
filename = data_path.split("clips")[1]
|
217 |
-
data_path = "/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/CV-18_MK/cv-mk/mk/clips" + filename
|
218 |
-
elif "podcast" in data_path:
|
219 |
-
filename = data_path.split("segmented_audio")[1]
|
220 |
-
data_path = "/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/podcast/audio/segmented_audio" + filename
|
221 |
-
elif "arhiv" in data_path:
|
222 |
-
filename = data_path.split("segmented_audio")[1]
|
223 |
-
data_path = "/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/arhiv/audio/segmented_audio" + filename
|
224 |
-
|
225 |
sig, sr = librosa.load(data_path, sr=16000)
|
226 |
-
# sig = sb.dataio.dataio.read_audio(wav)
|
227 |
return sig
|
228 |
|
229 |
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
@@ -270,8 +297,6 @@ if __name__ == "__main__":
|
|
270 |
# here we create the datasets objects as well as tokenization and encoding
|
271 |
(train_data, valid_data, test_data) = dataio_prepare(hparams)
|
272 |
|
273 |
-
#run_on_main(hparams["pretrainer"].collect_files)
|
274 |
-
#hparams["pretrainer"].load_collected()
|
275 |
|
276 |
# Trainer initialization
|
277 |
asr_brain = ASR(
|
|
|
31 |
# Add waveform augmentation if specified.
|
32 |
if stage == sb.Stage.TRAIN:
|
33 |
sig, self.sig_lens = self.hparams.wav_augment(sig, self.sig_lens)
|
|
|
34 |
|
35 |
# Forward pass
|
36 |
encoded_outputs = self.modules.encoder_w2v2(sig.detach())
|
|
|
74 |
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
75 |
tokens, tokens_lens = batch.tokens
|
76 |
|
|
|
|
|
|
|
77 |
loss = self.hparams.nll_cost(log_probabilities=predictions["seq_logprobs"], targets=tokens_eos, length=tokens_eos_lens)
|
78 |
|
79 |
if self.is_ctc_active(stage):
|
|
|
83 |
loss += self.hparams.ctc_weight * loss_ctc
|
84 |
|
85 |
if stage != sb.Stage.TRAIN:
|
|
|
|
|
86 |
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
87 |
target_words = [words.split(" ") for words in batch.transcript]
|
88 |
self.wer_metric.append(ids, predicted_words, target_words)
|
|
|
112 |
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
|
113 |
self.hparams.train_logger.log_stats(
|
114 |
stats_meta={"epoch": epoch, "lr": old_lr},
|
|
|
115 |
train_stats=self.train_stats,
|
116 |
valid_stats=stage_stats,
|
117 |
)
|
|
|
148 |
with torch.no_grad():
|
149 |
true_labels = []
|
150 |
pred_labels = []
|
|
|
151 |
for batch in dataset:
|
152 |
# Make sure that your compute_forward returns the predictions !!!
|
153 |
# In the case of the template, when stage = TEST, a beam search is applied
|
|
|
159 |
|
160 |
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
161 |
for sent in predicted_words:
|
162 |
+
# sent = " ".join(sent)
|
163 |
+
sent = filter_repetitions(sent, 3)
|
164 |
sent = " ".join(sent)
|
165 |
pred_batch.append(sent)
|
166 |
|
167 |
pred_labels.append(pred_batch[0])
|
168 |
true_labels.append(batch.transcript[0])
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
print('WER: ', wer(true_labels, pred_labels) * 100)
|
171 |
print('CER: ', cer(true_labels, pred_labels) * 100)
|
172 |
|
173 |
|
174 |
+
def filter_repetitions(seq, max_repetition_length):
|
175 |
+
seq = list(seq)
|
176 |
+
output = []
|
177 |
+
max_n = len(seq) // 2
|
178 |
+
for n in range(max_n, 0, -1):
|
179 |
+
max_repetitions = max(max_repetition_length // n, 1)
|
180 |
+
# Don't need to iterate over impossible n values:
|
181 |
+
# len(seq) can change a lot during iteration
|
182 |
+
if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
|
183 |
+
continue
|
184 |
+
iterator = enumerate(seq)
|
185 |
+
# Fill first buffers:
|
186 |
+
buffers = [[next(iterator)[1]] for _ in range(n)]
|
187 |
+
for seq_index, token in iterator:
|
188 |
+
current_buffer = seq_index % n
|
189 |
+
if token != buffers[current_buffer][-1]:
|
190 |
+
# No repeat, we can flush some tokens
|
191 |
+
buf_len = sum(map(len, buffers))
|
192 |
+
flush_start = (current_buffer-buf_len) % n
|
193 |
+
# Keep n-1 tokens, but possibly mark some for removal
|
194 |
+
for flush_index in range(buf_len - buf_len%n):
|
195 |
+
if (buf_len - flush_index) > n-1:
|
196 |
+
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
|
197 |
+
else:
|
198 |
+
to_flush = None
|
199 |
+
# Here, repetitions get removed:
|
200 |
+
if (flush_index // n < max_repetitions) and to_flush is not None:
|
201 |
+
output.append(to_flush)
|
202 |
+
elif (flush_index // n >= max_repetitions) and to_flush is None:
|
203 |
+
output.append(to_flush)
|
204 |
+
buffers[current_buffer].append(token)
|
205 |
+
# At the end, final flush
|
206 |
+
current_buffer += 1
|
207 |
+
buf_len = sum(map(len, buffers))
|
208 |
+
flush_start = (current_buffer-buf_len) % n
|
209 |
+
for flush_index in range(buf_len):
|
210 |
+
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
|
211 |
+
# Here, repetitions just get removed:
|
212 |
+
if flush_index // n < max_repetitions:
|
213 |
+
output.append(to_flush)
|
214 |
+
seq = []
|
215 |
+
to_delete = 0
|
216 |
+
for token in output:
|
217 |
+
if token is None:
|
218 |
+
to_delete += 1
|
219 |
+
elif to_delete > 0:
|
220 |
+
to_delete -= 1
|
221 |
+
else:
|
222 |
+
seq.append(token)
|
223 |
+
output = []
|
224 |
+
return seq
|
225 |
+
|
226 |
def dataio_prepare(hparams):
|
227 |
"""This function prepares the datasets to be used in the brain class.
|
228 |
It also defines the data processing pipeline through user-defined functions.
|
229 |
"""
|
230 |
data_folder = hparams["data_folder"]
|
231 |
|
232 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train.json"), replacements={"data_root": data_folder})
|
|
|
233 |
train_data = train_data.filtered_sorted(sort_key="duration")
|
234 |
hparams["train_dataloader_opts"]["shuffle"] = False
|
235 |
|
236 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "dev.json"), replacements={"data_root": data_folder})
|
237 |
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
238 |
|
239 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test.json"), replacements={"data_root": data_folder})
|
240 |
|
241 |
|
242 |
datasets = [train_data, valid_data, test_data]
|
|
|
249 |
@sb.utils.data_pipeline.takes("data_path")
|
250 |
@sb.utils.data_pipeline.provides("sig")
|
251 |
def audio_pipeline(data_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
sig, sr = librosa.load(data_path, sr=16000)
|
253 |
+
# sig = sb.dataio.dataio.read_audio(wav) # alternatively use the SpeechBrain data loading function
|
254 |
return sig
|
255 |
|
256 |
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
|
|
297 |
# here we create the datasets objects as well as tokenization and encoding
|
298 |
(train_data, valid_data, test_data) = dataio_prepare(hparams)
|
299 |
|
|
|
|
|
300 |
|
301 |
# Trainer initialization
|
302 |
asr_brain = ASR(
|