Porjaz commited on
Commit
641eeeb
1 Parent(s): b1c4d32

Update custom_interface.py

Browse files
Files changed (1) hide show
  1. custom_interface.py +6 -3
custom_interface.py CHANGED
@@ -1,5 +1,6 @@
1
  import torch
2
  from speechbrain.inference.interfaces import Pretrained
 
3
 
4
 
5
  class ASR(Pretrained):
@@ -20,13 +21,15 @@ class ASR(Pretrained):
20
  # Output layer for seq2seq log-probabilities
21
  predictions = self.hparams.test_search(encoded_outputs, self.wav_lens)[0]
22
  predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
23
- print(predicted_words)
24
 
25
  return predicted_words
26
 
27
 
28
  def classify_file(self, path):
29
- waveform = self.load_audio(path)
 
 
 
30
  # Fake a batch:
31
  batch = waveform.unsqueeze(0)
32
  rel_length = torch.tensor([1.0])
@@ -35,4 +38,4 @@ class ASR(Pretrained):
35
  return outputs
36
 
37
  # def forward(self, wavs, wav_lens=None):
38
- # return self.encode_batch(wavs=wavs, wav_lens=wav_lens)
 
1
  import torch
2
  from speechbrain.inference.interfaces import Pretrained
3
+ import librosa
4
 
5
 
6
  class ASR(Pretrained):
 
21
  # Output layer for seq2seq log-probabilities
22
  predictions = self.hparams.test_search(encoded_outputs, self.wav_lens)[0]
23
  predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
 
24
 
25
  return predicted_words
26
 
27
 
28
  def classify_file(self, path):
29
+ # waveform = self.load_audio(path)
30
+ waveform, sr = librosa.load(path, sr=16000)
31
+ waveform = torch.tensor(waveform).unsqueeze(0)
32
+
33
  # Fake a batch:
34
  batch = waveform.unsqueeze(0)
35
  rel_length = torch.tensor([1.0])
 
38
  return outputs
39
 
40
  # def forward(self, wavs, wav_lens=None):
41
+ # return self.encode_batch(wavs=wavs, wav_lens=wav_lens)