File size: 11,391 Bytes
bc55b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
Currently we support datasets in **alpaca** and **sharegpt** format.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"split": "the name of dataset split to be used. (optional, default: train)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"num_samples": "the number of samples in the dataset to be used. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
"response": "the column name in the dataset containing the responses. (default: output)",
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"videos": "the column name in the dataset containing the videos inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
"content_tag": "the key in the message represents the content. (default: value)",
"user_tag": "the value of the role_tag represents the user. (default: human)",
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
}
}
```
## Alpaca Format
### Supervised Fine-Tuning Dataset
* [Example dataset](alpaca_en_demo.json)
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
The `system` column will be used as the system prompt if specified.
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
### Pre-training Dataset
- [Example dataset](c4_demo.json)
In pre-training, only the `text` column will be used for model learning.
```json
[
{"text": "document"},
{"text": "document"}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
### Preference Dataset
Preference datasets are used for reward modeling, DPO training, ORPO and SimPO training.
It requires a better response in `chosen` column and a worse response in `rejected` column.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
An additional column `kto_tag` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
### Multimodal Image Dataset
An additional column `images` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
### Multimodal Video Dataset
An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
## Sharegpt Format
### Supervised Fine-Tuning Dataset
- [Example dataset](glaive_toolcall_en_demo.json)
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "function_call",
"value": "tool arguments"
},
{
"from": "observation",
"value": "tool result"
},
{
"from": "gpt",
"value": "model response"
}
],
"system": "system prompt (optional)",
"tools": "tool description (optional)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
```
### Pre-training Dataset
Not yet supported, please use the [alpaca](#alpaca-format) format.
### Preference Dataset
- [Example dataset](dpo_en_demo.json)
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
},
{
"from": "human",
"value": "human instruction"
}
],
"chosen": {
"from": "gpt",
"value": "chosen answer (required)"
},
"rejected": {
"from": "gpt",
"value": "rejected answer (required)"
}
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
- [Example dataset](kto_en_demo.json)
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"kto_tag": "human feedback [true/false] (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"kto_tag": "kto_tag"
}
}
```
### Multimodal Image Dataset
- [Example dataset](mllm_demo.json)
Multimodal image datasets require a `images` column containing the paths to the input images.
The number of images should be identical to the `<image>` tokens in the conversations.
```json
[
{
"conversations": [
{
"from": "human",
"value": "<image>human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"images": [
"image path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images"
}
}
```
### Multimodal Video Dataset
- [Example dataset](mllm_video_demo.json)
Multimodal video datasets require a `videos` column containing the paths to the input videos.
The number of videos should be identical to the `<video>` tokens in the conversations.
```json
[
{
"conversations": [
{
"from": "human",
"value": "<video>human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"videos": [
"video path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"videos": "videos"
}
}
```
### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
```json
[
{
"messages": [
{
"role": "system",
"content": "system prompt (optional)"
},
{
"role": "user",
"content": "human instruction"
},
{
"role": "assistant",
"content": "model response"
}
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
|