|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ...extras.logging import get_logger |
|
from .processor_utils import greedy_knapsack, infer_seqlen |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer, ProcessorMixin |
|
|
|
from ...hparams import DataArguments |
|
from ..mm_plugin import ImageInput, VideoInput |
|
from ..template import Template |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _encode_supervised_example( |
|
prompt: Sequence[Dict[str, str]], |
|
response: Sequence[Dict[str, str]], |
|
system: Optional[str], |
|
tools: Optional[str], |
|
images: Sequence["ImageInput"], |
|
videos: Sequence["VideoInput"], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
cutoff_len: int, |
|
train_on_prompt: bool, |
|
mask_history: bool, |
|
) -> Tuple[List[int], List[int]]: |
|
messages = template.mm_plugin.process_messages(prompt + response, images, videos, processor) |
|
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, tokenizer, processor) |
|
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools) |
|
total_length = len(input_ids) + (1 if template.efficient_eos else 0) |
|
if mask_history: |
|
encoded_pairs = encoded_pairs[::-1] |
|
|
|
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs): |
|
if total_length >= cutoff_len: |
|
break |
|
|
|
source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), cutoff_len - total_length) |
|
source_ids = source_ids[:source_len] |
|
target_ids = target_ids[:target_len] |
|
total_length += source_len + target_len |
|
|
|
if train_on_prompt: |
|
source_label = source_ids |
|
elif template.efficient_eos: |
|
source_label = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1) |
|
else: |
|
source_label = [IGNORE_INDEX] * source_len |
|
|
|
if mask_history and turn_idx != 0: |
|
target_label = [IGNORE_INDEX] * target_len |
|
else: |
|
target_label = target_ids |
|
|
|
if mask_history: |
|
input_ids = source_ids + target_ids + input_ids |
|
labels = source_label + target_label + labels |
|
else: |
|
input_ids += source_ids + target_ids |
|
labels += source_label + target_label |
|
|
|
if template.efficient_eos: |
|
input_ids += [tokenizer.eos_token_id] |
|
labels += [tokenizer.eos_token_id] |
|
|
|
return input_ids, labels |
|
|
|
|
|
def preprocess_supervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[Any]]: |
|
|
|
|
|
model_inputs = defaultdict(list) |
|
for i in range(len(examples["_prompt"])): |
|
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1: |
|
logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) |
|
continue |
|
|
|
input_ids, labels = _encode_supervised_example( |
|
prompt=examples["_prompt"][i], |
|
response=examples["_response"][i], |
|
system=examples["_system"][i], |
|
tools=examples["_tools"][i], |
|
images=examples["_images"][i] or [], |
|
videos=examples["_videos"][i] or [], |
|
template=template, |
|
tokenizer=tokenizer, |
|
processor=processor, |
|
cutoff_len=data_args.cutoff_len, |
|
train_on_prompt=data_args.train_on_prompt, |
|
mask_history=data_args.mask_history, |
|
) |
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["attention_mask"].append([1] * len(input_ids)) |
|
model_inputs["labels"].append(labels) |
|
model_inputs["images"].append(examples["_images"][i]) |
|
model_inputs["videos"].append(examples["_videos"][i]) |
|
|
|
return model_inputs |
|
|
|
|
|
def preprocess_packed_supervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[Any]]: |
|
|
|
|
|
|
|
valid_num = 0 |
|
batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], [] |
|
lengths = [] |
|
length2indexes = defaultdict(list) |
|
for i in range(len(examples["_prompt"])): |
|
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1: |
|
logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) |
|
continue |
|
|
|
input_ids, labels = _encode_supervised_example( |
|
prompt=examples["_prompt"][i], |
|
response=examples["_response"][i], |
|
system=examples["_system"][i], |
|
tools=examples["_tools"][i], |
|
images=examples["_images"][i] or [], |
|
videos=examples["_videos"][i] or [], |
|
template=template, |
|
tokenizer=tokenizer, |
|
processor=processor, |
|
cutoff_len=data_args.cutoff_len - 1, |
|
train_on_prompt=data_args.train_on_prompt, |
|
mask_history=data_args.mask_history, |
|
) |
|
length = len(input_ids) |
|
if length > data_args.cutoff_len: |
|
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len)) |
|
else: |
|
lengths.append(length) |
|
length2indexes[length].append(valid_num) |
|
batch_input_ids.append(input_ids) |
|
batch_labels.append(labels) |
|
batch_images.append(examples["_images"][i] or []) |
|
batch_videos.append(examples["_videos"][i] or []) |
|
valid_num += 1 |
|
|
|
model_inputs = defaultdict(list) |
|
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) |
|
for knapsack in knapsacks: |
|
packed_input_ids, packed_attention_masks, packed_labels = [], [], [] |
|
packed_images, packed_videos = [], [] |
|
for i, length in enumerate(knapsack): |
|
index = length2indexes[length].pop() |
|
packed_input_ids += batch_input_ids[index] |
|
packed_labels += batch_labels[index] |
|
packed_images += batch_images[index] |
|
packed_videos += batch_videos[index] |
|
if data_args.neat_packing: |
|
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) |
|
else: |
|
packed_attention_masks += [1] * len(batch_input_ids[index]) |
|
|
|
if len(packed_input_ids) < data_args.cutoff_len: |
|
pad_length = data_args.cutoff_len - len(packed_input_ids) |
|
packed_input_ids += [tokenizer.pad_token_id] * pad_length |
|
packed_labels += [IGNORE_INDEX] * pad_length |
|
if data_args.neat_packing: |
|
packed_attention_masks += [0] * pad_length |
|
else: |
|
packed_attention_masks += [1] * pad_length |
|
|
|
if len(packed_input_ids) != data_args.cutoff_len: |
|
raise ValueError("The length of packed example should be identical to the cutoff length.") |
|
|
|
model_inputs["input_ids"].append(packed_input_ids) |
|
model_inputs["attention_mask"].append(packed_attention_masks) |
|
model_inputs["labels"].append(packed_labels) |
|
model_inputs["images"].append(packed_images or None) |
|
model_inputs["videos"].append(packed_videos or None) |
|
|
|
return model_inputs |
|
|
|
|
|
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) |
|
print("input_ids:\n{}".format(example["input_ids"])) |
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) |
|
print("label_ids:\n{}".format(example["labels"])) |
|
print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False))) |
|
|