|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, List, Optional |
|
|
|
from ...data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer |
|
from ...extras.ploting import plot_loss |
|
from ...model import load_model, load_tokenizer |
|
from ..callbacks import fix_valuehead_checkpoint |
|
from ..trainer_utils import create_ref_model, create_reward_model |
|
from .trainer import CustomPPOTrainer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback |
|
|
|
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments |
|
|
|
|
|
def run_ppo( |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
generating_args: "GeneratingArguments", |
|
callbacks: Optional[List["TrainerCallback"]] = None, |
|
): |
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
template = get_template_and_fix_tokenizer(tokenizer, data_args) |
|
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="ppo", **tokenizer_module) |
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True) |
|
|
|
tokenizer.padding_side = "left" |
|
data_collator = MultiModalDataCollatorForSeq2Seq(template=template, **tokenizer_module) |
|
|
|
|
|
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True) |
|
reward_model = create_reward_model(model, model_args, finetuning_args) |
|
|
|
|
|
ppo_trainer: "CustomPPOTrainer" = CustomPPOTrainer( |
|
model_args=model_args, |
|
training_args=training_args, |
|
finetuning_args=finetuning_args, |
|
generating_args=generating_args, |
|
callbacks=callbacks, |
|
model=model, |
|
reward_model=reward_model, |
|
ref_model=ref_model, |
|
data_collator=data_collator, |
|
**dataset_module, |
|
**tokenizer_module, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint) |
|
ppo_trainer.save_model() |
|
if training_args.should_save: |
|
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) |
|
|
|
ppo_trainer.save_state() |
|
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss: |
|
plot_loss(training_args.output_dir, keys=["loss", "reward"]) |
|
|