|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import Seq2SeqTrainer |
|
from typing_extensions import override |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ...extras.logging import get_logger |
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback |
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler |
|
|
|
|
|
if TYPE_CHECKING: |
|
from torch.utils.data import Dataset |
|
from transformers import ProcessorMixin |
|
from transformers.trainer import PredictionOutput |
|
|
|
from ...hparams import FinetuningArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class CustomSeq2SeqTrainer(Seq2SeqTrainer): |
|
r""" |
|
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE. |
|
""" |
|
|
|
def __init__( |
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.finetuning_args = finetuning_args |
|
|
|
if processor is not None: |
|
self.add_callback(SaveProcessorCallback(processor)) |
|
|
|
if finetuning_args.pissa_convert: |
|
self.add_callback(PissaConvertCallback) |
|
|
|
if finetuning_args.use_badam: |
|
from badam import BAdamCallback, clip_grad_norm_old_version |
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) |
|
self.add_callback(BAdamCallback) |
|
|
|
@override |
|
def create_optimizer(self) -> "torch.optim.Optimizer": |
|
if self.optimizer is None: |
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) |
|
return super().create_optimizer() |
|
|
|
@override |
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None |
|
) -> "torch.optim.lr_scheduler.LRScheduler": |
|
create_custom_scheduler(self.args, num_training_steps, optimizer) |
|
return super().create_scheduler(num_training_steps, optimizer) |
|
|
|
@override |
|
def prediction_step( |
|
self, |
|
model: "torch.nn.Module", |
|
inputs: Dict[str, Union["torch.Tensor", Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[List[str]] = None, |
|
) -> Tuple[Optional[float], Optional["torch.Tensor"], Optional["torch.Tensor"]]: |
|
r""" |
|
Removes the prompt part in the generated tokens. |
|
|
|
Subclass and override to inject custom behavior. |
|
""" |
|
labels = inputs["labels"] if "labels" in inputs else None |
|
if self.args.predict_with_generate: |
|
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor." |
|
labels = labels.detach().clone() if labels is not None else None |
|
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1) |
|
if prompt_len > label_len: |
|
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"]) |
|
if label_len > prompt_len: |
|
inputs["labels"] = inputs["labels"][:, :prompt_len] |
|
|
|
loss, generated_tokens, _ = super().prediction_step( |
|
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys |
|
) |
|
if generated_tokens is not None and self.args.predict_with_generate: |
|
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id |
|
generated_tokens = generated_tokens.contiguous() |
|
|
|
return loss, generated_tokens, labels |
|
|
|
def _pad_tensors_to_target_len(self, src_tensor: "torch.Tensor", tgt_tensor: "torch.Tensor") -> "torch.Tensor": |
|
r""" |
|
Pads the tensor to the same length as the target tensor. |
|
""" |
|
assert self.tokenizer.pad_token_id is not None, "Pad token is required." |
|
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor) |
|
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor |
|
return padded_tensor.contiguous() |
|
|
|
def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None: |
|
r""" |
|
Saves model predictions to `output_dir`. |
|
|
|
A custom behavior that not contained in Seq2SeqTrainer. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") |
|
logger.info(f"Saving prediction results to {output_prediction_file}") |
|
|
|
labels = np.where( |
|
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id |
|
) |
|
preds = np.where( |
|
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id |
|
) |
|
|
|
for i in range(len(preds)): |
|
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0] |
|
if len(pad_len): |
|
preds[i] = np.concatenate((preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1) |
|
|
|
decoded_inputs = self.tokenizer.batch_decode(dataset["input_ids"], skip_special_tokens=True) |
|
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
with open(output_prediction_file, "w", encoding="utf-8") as writer: |
|
res: List[str] = [] |
|
for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds): |
|
res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False)) |
|
|
|
writer.write("\n".join(res)) |
|
|