# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from llamafactory.train.test_utils import compare_model, load_infer_model, load_reference_model, load_train_model TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TINY_LLAMA_PISSA = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "lora", "pissa_init": True, "pissa_iter": -1, "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } INFER_ARGS = { "model_name_or_path": TINY_LLAMA_PISSA, "adapter_name_or_path": TINY_LLAMA_PISSA, "adapter_folder": "pissa_init", "finetuning_type": "lora", "template": "llama3", "infer_dtype": "float16", } OS_NAME = os.environ.get("OS_NAME", "") @pytest.mark.xfail(OS_NAME.startswith("windows"), reason="Known connection error on Windows.") def test_pissa_train(): model = load_train_model(**TRAIN_ARGS) ref_model = load_reference_model(TINY_LLAMA_PISSA, TINY_LLAMA_PISSA, use_pissa=True, is_trainable=True) compare_model(model, ref_model) @pytest.mark.xfail(OS_NAME.startswith("windows"), reason="Known connection error on Windows.") def test_pissa_inference(): model = load_infer_model(**INFER_ARGS) ref_model = load_reference_model(TINY_LLAMA_PISSA, TINY_LLAMA_PISSA, use_pissa=True, is_trainable=False) ref_model = ref_model.merge_and_unload() compare_model(model, ref_model)