# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import torch from llamafactory.train.test_utils import ( check_lora_model, compare_model, load_infer_model, load_reference_model, load_train_model, patch_valuehead_model, ) TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TINY_LLAMA_ADAPTER = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora") TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "lora", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "adapter_name_or_path": TINY_LLAMA_ADAPTER, "finetuning_type": "lora", "template": "llama3", "infer_dtype": "float16", } @pytest.fixture def fix_valuehead_cpu_loading(): patch_valuehead_model() def test_lora_train_qv_modules(): model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS) linear_modules, _ = check_lora_model(model) assert linear_modules == {"q_proj", "v_proj"} def test_lora_train_all_modules(): model = load_train_model(lora_target="all", **TRAIN_ARGS) linear_modules, _ = check_lora_model(model) assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"} def test_lora_train_extra_modules(): model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS) _, extra_modules = check_lora_model(model) assert extra_modules == {"embed_tokens", "lm_head"} def test_lora_train_old_adapters(): model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS) ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True) compare_model(model, ref_model) def test_lora_train_new_adapters(): model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS) ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True) compare_model( model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"] ) @pytest.mark.usefixtures("fix_valuehead_cpu_loading") def test_lora_train_valuehead(): model = load_train_model(add_valuehead=True, **TRAIN_ARGS) ref_model = load_reference_model(TINY_LLAMA_VALUEHEAD, is_trainable=True, add_valuehead=True) state_dict = model.state_dict() ref_state_dict = ref_model.state_dict() assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"]) assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"]) def test_lora_inference(): model = load_infer_model(**INFER_ARGS) ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload() compare_model(model, ref_model)