--- license: llama2 language: - zh tags: - text-generation-inference --- This language model was finetuned with a dataset of 52k Chinese instructions. The dataset is called MagicData-CLAM and was originally generated in Chinese (instead of translated from English). For dataset description, inference examples and other details, see: https://github.com/magichub-opensource/CLAM-Conversational-Language-AI-from-MagicData ### 模型推理 * 单卡加载一个模型需要15G显存。 * 本地测试环境:py310-torch1.13.1-cuda11.6-cudnn8 #### Web Demo 我们使用 [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main) 开源项目搭建的 demo 进行推理,得到文档中的对比样例。该demo支持在网页端切换模型、调整多种常见参数等。 实验环境:py310-torch1.13.1-cuda11.6-cudnn8 ``` git clone https://github.com/oobabooga/text-generation-webui.git cd text-generation-webui pip install -r requirements.txt # 建议使用软链接将模型绝对路径链至 `./models`。也可以直接拷贝进去。 ln -s ${model_dir_absolute_path} models/${model_name} # 启动服务 python server.py --model ${model_name} --listen --listen-host 0.0.0.0 --listen-port ${port} ``` 如果服务正常启动,就可以通过该端口访问服务了 `${server_ip}:${port}` #### Inference script See https://github.com/magichub-opensource/CLAM-Conversational-Language-AI-from-MagicData/blob/master/inference.py ``` import os,sys,argparse # os.environ['CUDA_VISIBLE_DEVICES'] = '1' import torch import re import transformers from transformers import AutoModelForCausalLM, AutoTokenizer # modelpath = 'models/Chinese-llama2-CLAM-7b' # local path modelpath = 'MagicHub/Chinese-llama2-CLAM-7b' # huggingface repo print(f'model path: {modelpath}') model = AutoModelForCausalLM.from_pretrained(modelpath, device_map="cuda:0", torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(modelpath, use_fast=False) prompt = "歌剧和京剧的区别是什么?\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0") generate_ids = model.generate( inputs.input_ids, do_sample=True, max_new_tokens=1024, top_k=10, top_p=0.1, temperature=0.5, repetition_penalty=1.18, eos_token_id=2, bos_token_id=1, pad_token_id=0, typical_p=1.0,encoder_repetition_penalty=1, ) response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] cleaned_response = re.sub('^'+prompt,'', response) print(f'输入:\n{prompt}\n') print(f"输出:\n{cleaned_response}\n") ```