File size: 2,051 Bytes
be10340
36e1121
4269725
c9401b9
 
 
 
 
319a649
 
be10340
8179663
 
4d20c49
8179663
 
 
 
 
 
808cb17
8179663
 
 
 
 
 
 
 
 
be10340
87ad8c9
 
 
44ddcbf
 
 
 
 
 
 
 
 
 
 
be5153c
 
 
 
 
 
 
a67a0a9
 
be5153c
a042ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87ad8c9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
library_name: peft
datasets:
- Yasbok/Alpaca_arabic_instruct
language:
- ar
pipeline_tag: text-generation
tags:
- finance
---
# Meta_LLama3_Arabic

**Meta_LLama3_Arabic** is a fine-tuned version of Meta's LLaMa model, specialized for Arabic language tasks. This model has been designed for a variety of NLP tasks including text generation,and language comprehension in Arabic.

## Model Details

- **Model Name**: Meta_LLama3_Arabic
- **Base Model**: LLaMa
- **Languages**: Arabic
- **Tasks**: Text Generation,Language Understanding
- **Quantization**: [Specify if it’s quantized, e.g., 4-bit quantization with `bitsandbytes`, or float32]

## Installation

To use this model, you need the  `unsloth` and`transformers` library from Hugging Face. You can install it as follows:

```bash
! pip install transformers unsloth
```

how to use :

```python
alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب.

### التعليمات:
{}

### المدخل:
{}

### الاستجابة:
{}"""


from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "MahmoudIbrahim/Meta_LLama3_Arabic", # YOUR MODEL YOU USED FOR TRAINING
      max_seq_length = 2048,
      dtype = None,
      load_in_4bit = True,
    )

#FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "    ماذا تعرف عن الحضاره المصريه ", # instruction

        "  القديمة",
        "",# output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens =150)

```