--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit library_name: transformers datasets: - Yasbok/Alpaca_arabic_instruct - MahmoudIbrahim/Arabic_NVIDIA language: - ar pipeline_tag: text-generation tags: - finance --- # Meta-LLama3-Instruct-Arabic **Meta-LLama3-Instruct-Arabic** is a fine-tuned version of Meta's LLaMa model, specialized for Arabic language tasks. This model has been designed for a variety of NLP tasks including text generation,and language comprehension in Arabic. ## Model Details - **Model Name**: Meta-LLama3-Instruct-Arabic - **Base Model**: LLaMa - **Languages**: Arabic - **Tasks**: Text Generation,Language Understanding - **Quantization**: [Specify if it’s quantized, e.g., 4-bit quantization with `bitsandbytes`, or float32] ## Installation To use this model, you need the `unsloth` and`transformers` library from Hugging Face. You can install it as follows: ```bash ! pip install transformers bitsandbytes ``` how to use: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from IPython.display import Markdown import textwrap # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("MahmoudIbrahim/Meta-LLama3-Instruct-Arabic") model = AutoModelForCausalLM.from_pretrained("MahmoudIbrahim/Meta-LLama3-Instruct-Arabic",load_in_4bit =True) alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب. ### التعليمات: {} ### الاستجابة: {}""" # Format the prompt with instruction and an empty output placeholder formatted_prompt = alpaca_prompt.format( "ماذا تعرف عن الحضاره المصريه" , # instruction "" # Leave output blank for generation ) # Tokenize the formatted string directly input_ids = tokenizer.encode(formatted_prompt, return_tensors="pt") # Use 'cuda' if you want to run on GPU def to_markdown(text): text = text.replace('•','*') return Markdown(textwrap.indent(text, '>', predicate=lambda _: True)) # Generate text output = model.generate( input_ids, max_length=128, # Adjust max length as needed num_return_sequences=1, # Number of generated responses no_repeat_ngram_size=2, # Prevent repetition top_k=50, # Filter to top-k tokens top_p=0.9, # Use nucleus sampling temperature=0.7 , # Control creativity level ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) to_markdown(generated_text) ```