--- base_model: unsloth/Mistral-Nemo-Base-2407-bnb-4bit library_name: transformers language: - ar pipeline_tag: text-generation datasets: - MahmoudIbrahim/Arabic_NVIDIA --- - **Developed by:** Mahmoud Ibrahim - **How to use :** ``` bush ! pip install transformers bitsandbytes ``` ```python from transformers import AutoTokenizer, AutoModelForCausalLM from IPython.display import Markdown import textwrap # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("MahmoudIbrahim/Mistral_12b_Arabic") model = AutoModelForCausalLM.from_pretrained("MahmoudIbrahim/Mistral_12b_Arabic",load_in_4bit =True) alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب. ### التعليمات: {} ### الاستجابة: {}""" # Format the prompt with instruction and an empty output placeholder formatted_prompt = alpaca_prompt.format( "كيف يمكن للحكومة المصرية والمجتمع ككل أن يعززوا من قدرة البلاد على تحقيق التنمية المستدامة؟ " , # instruction "" # Leave output blank for generation ) # Tokenize the formatted string directly input_ids = tokenizer.encode(formatted_prompt, return_tensors="pt") # Use 'cuda' if you want to run on GPU def to_markdown(text): text = text.replace('•','*') return Markdown(textwrap.indent(text, '>', predicate=lambda _: True)) # Generate text output = model.generate( input_ids, max_length=128, # Adjust max length as needed num_return_sequences=1, # Number of generated responses no_repeat_ngram_size=2, # Prevent repetition top_k=50, # Filter to top-k tokens top_p=0.9, # Use nucleus sampling temperature=0.7 , # Control creativity level ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) to_markdown(generated_text) ``` **The model response :** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f36b5377b0eb97ea124e32/DPdKT-kQiDtfulJ-qQ8DX.png)