File size: 11,244 Bytes
9c3a994 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# -*- coding: utf-8 -*-
from typing import List, Tuple, Dict, Optional
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
from torch.optim import lr_scheduler
import pytorch_lightning as pl
from typing import Union
from functools import partial
from michelangelo.utils import instantiate_from_config
from .inference_utils import extract_geometry
from .tsal_base import (
AlignedShapeAsLatentModule,
ShapeAsLatentModule,
Latent2MeshOutput,
AlignedMeshOutput
)
class AlignedShapeAsLatentPLModule(pl.LightningModule):
def __init__(self, *,
shape_module_cfg,
aligned_module_cfg,
loss_cfg,
optimizer_cfg: Optional[DictConfig] = None,
ckpt_path: Optional[str] = None,
ignore_keys: Union[Tuple[str], List[str]] = ()):
super().__init__()
shape_model: ShapeAsLatentModule = instantiate_from_config(
shape_module_cfg, device=None, dtype=None
)
self.model: AlignedShapeAsLatentModule = instantiate_from_config(
aligned_module_cfg, shape_model=shape_model
)
self.loss = instantiate_from_config(loss_cfg)
self.optimizer_cfg = optimizer_cfg
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.save_hyperparameters()
def set_shape_model_only(self):
self.model.set_shape_model_only()
@property
def latent_shape(self):
return self.model.shape_model.latent_shape
@property
def zero_rank(self):
if self._trainer:
zero_rank = self.trainer.local_rank == 0
else:
zero_rank = True
return zero_rank
def init_from_ckpt(self, path, ignore_keys=()):
state_dict = torch.load(path, map_location="cpu")["state_dict"]
keys = list(state_dict.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del state_dict[k]
missing, unexpected = self.load_state_dict(state_dict, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def configure_optimizers(self) -> Tuple[List, List]:
lr = self.learning_rate
trainable_parameters = list(self.model.parameters())
if self.optimizer_cfg is None:
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
schedulers = []
else:
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
scheduler_func = instantiate_from_config(
self.optimizer_cfg.scheduler,
max_decay_steps=self.trainer.max_steps,
lr_max=lr
)
scheduler = {
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
"interval": "step",
"frequency": 1
}
optimizers = [optimizer]
schedulers = [scheduler]
return optimizers, schedulers
def forward(self,
surface: torch.FloatTensor,
image: torch.FloatTensor,
text: torch.FloatTensor,
volume_queries: torch.FloatTensor):
"""
Args:
surface (torch.FloatTensor):
image (torch.FloatTensor):
text (torch.FloatTensor):
volume_queries (torch.FloatTensor):
Returns:
"""
embed_outputs, shape_z = self.model(surface, image, text)
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
latents = self.model.shape_model.decode(shape_zq)
logits = self.model.shape_model.query_geometry(volume_queries, latents)
return embed_outputs, logits, posterior
def encode(self, surface: torch.FloatTensor, sample_posterior=True):
pc = surface[..., 0:3]
feats = surface[..., 3:6]
shape_embed, shape_zq, posterior = self.model.shape_model.encode(
pc=pc, feats=feats, sample_posterior=sample_posterior
)
return shape_zq
def decode(self,
z_q,
bounds: Union[Tuple[float], List[float], float] = 1.1,
octree_depth: int = 7,
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
latents = self.model.shape_model.decode(z_q) # latents: [bs, num_latents, dim]
outputs = self.latent2mesh(latents, bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks)
return outputs
def training_step(self, batch: Dict[str, torch.FloatTensor],
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
"""
Args:
batch (dict): the batch sample, and it contains:
- surface (torch.FloatTensor): [bs, n_surface, (3 + input_dim)]
- image (torch.FloatTensor): [bs, 3, 224, 224]
- text (torch.FloatTensor): [bs, num_templates, 77]
- geo_points (torch.FloatTensor): [bs, n_pts, (3 + 1)]
batch_idx (int):
optimizer_idx (int):
Returns:
loss (torch.FloatTensor):
"""
surface = batch["surface"]
image = batch["image"]
text = batch["text"]
volume_queries = batch["geo_points"][..., 0:3]
shape_labels = batch["geo_points"][..., -1]
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
aeloss, log_dict_ae = self.loss(
**embed_outputs,
posteriors=posteriors,
shape_logits=shape_logits,
shape_labels=shape_labels,
split="train"
)
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
sync_dist=False, rank_zero_only=True)
return aeloss
def validation_step(self, batch: Dict[str, torch.FloatTensor], batch_idx: int) -> torch.FloatTensor:
surface = batch["surface"]
image = batch["image"]
text = batch["text"]
volume_queries = batch["geo_points"][..., 0:3]
shape_labels = batch["geo_points"][..., -1]
embed_outputs, shape_logits, posteriors = self(surface, image, text, volume_queries)
aeloss, log_dict_ae = self.loss(
**embed_outputs,
posteriors=posteriors,
shape_logits=shape_logits,
shape_labels=shape_labels,
split="val"
)
self.log_dict(log_dict_ae, prog_bar=True, logger=True, batch_size=shape_logits.shape[0],
sync_dist=False, rank_zero_only=True)
return aeloss
def visual_alignment(self,
surface: torch.FloatTensor,
image: torch.FloatTensor,
text: torch.FloatTensor,
description: Optional[List[str]] = None,
bounds: Union[Tuple[float], List[float]] = (-1.25, -1.25, -1.25, 1.25, 1.25, 1.25),
octree_depth: int = 7,
num_chunks: int = 10000) -> List[AlignedMeshOutput]:
"""
Args:
surface:
image:
text:
description:
bounds:
octree_depth:
num_chunks:
Returns:
mesh_outputs (List[AlignedMeshOutput]): the mesh outputs list.
"""
outputs = []
device = surface.device
bs = surface.shape[0]
embed_outputs, shape_z = self.model(surface, image, text)
# calculate the similarity
image_embed = embed_outputs["image_embed"]
text_embed = embed_outputs["text_embed"]
shape_embed = embed_outputs["shape_embed"]
# normalized features
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
text_embed = F.normalize(text_embed, dim=-1, p=2)
image_embed = F.normalize(image_embed, dim=-1, p=2)
# B x B
shape_text_similarity = (100.0 * shape_embed @ text_embed.T).softmax(dim=-1)
# B x B
shape_image_similarity = (100.0 * shape_embed @ image_embed.T).softmax(dim=-1)
# shape reconstruction
shape_zq, posterior = self.model.shape_model.encode_kl_embed(shape_z)
latents = self.model.shape_model.decode(shape_zq)
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
# 2. decode geometry
mesh_v_f, has_surface = extract_geometry(
geometric_func=geometric_func,
device=device,
batch_size=bs,
bounds=bounds,
octree_depth=octree_depth,
num_chunks=num_chunks,
disable=not self.zero_rank
)
# 3. decode texture
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
if not is_surface:
outputs.append(None)
continue
out = AlignedMeshOutput()
out.mesh_v = mesh_v
out.mesh_f = mesh_f
out.surface = surface[i].cpu().numpy()
out.image = image[i].cpu().numpy()
if description is not None:
out.text = description[i]
out.shape_text_similarity = shape_text_similarity[i, i]
out.shape_image_similarity = shape_image_similarity[i, i]
outputs.append(out)
return outputs
def latent2mesh(self,
latents: torch.FloatTensor,
bounds: Union[Tuple[float], List[float], float] = 1.1,
octree_depth: int = 7,
num_chunks: int = 10000) -> List[Latent2MeshOutput]:
"""
Args:
latents: [bs, num_latents, dim]
bounds:
octree_depth:
num_chunks:
Returns:
mesh_outputs (List[MeshOutput]): the mesh outputs list.
"""
outputs = []
geometric_func = partial(self.model.shape_model.query_geometry, latents=latents)
# 2. decode geometry
device = latents.device
mesh_v_f, has_surface = extract_geometry(
geometric_func=geometric_func,
device=device,
batch_size=len(latents),
bounds=bounds,
octree_depth=octree_depth,
num_chunks=num_chunks,
disable=not self.zero_rank
)
# 3. decode texture
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
if not is_surface:
outputs.append(None)
continue
out = Latent2MeshOutput()
out.mesh_v = mesh_v
out.mesh_f = mesh_f
outputs.append(out)
return outputs
|