File size: 14,399 Bytes
5486e42
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37986520d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3798652160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37986521f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3798652280>", "_build": "<function ActorCriticPolicy._build at 0x7f3798652310>", "forward": "<function ActorCriticPolicy.forward at 0x7f37986523a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3798652430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37986524c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3798652550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37986525e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3798652670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3798651180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668015239311019863, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2wJz4f//e7o7pVuy7V/ziWpDa9+Kl5OgAAgD8AAIA/DfMevqP+HD31A6Y6Y5o6vigfFr1JSZ69AAAAAAAAAADdwc4+wLKdvZukkDh2EAK3v01gvixTq7cAAIA/AACAPxp+JD2uY5K6Ypw3vCodAjZ5awu76zNrtQAAgD8AAIA/rfFGvtfwbjxCwEu6FmOHOG3R/r0KwHo5AACAPwAAgD/GT1s+8lJcPwJ/hj31xrC+KDKePFZgSr4AAAAAAAAAADNpYT4PjRW8UgDZu3yNhDnMd329YsBOOgAAgD8AAIA/zfL7PEU+BT9oKG08r8ljvkpwZbwGZ/+7AAAAAAAAAABN8+m9rieGuP0NsDpkwf24rJ+NOhySpjkAAIA/AACAP720Ub5st+w8krrcupvWoTmbOIO+Zk0nOgAAgD8AAIA/SgS6viRXVzwC7eu47MObNoNdlr2XsBA4AACAPwAAgD8qwJA+e7atuuJ32juTwZs4bMjXOblxiLkAAIA/AACAPzPuqjyFG4S5XvcJuntKtbYfMS47rKMoNgAAgD8AAIA/2la8PRoNYj56Y8u9cz5pvgAxEb4lTEW9AAAAAAAAAAAdMWa+76gqPTwhH7rmjp44difDvmK6BbYAAIA/AACAPzrVCT49ekO7sqSWO7pLpbjfE5q8ZtGxugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkwILYEqIYkCUhpRSlIwBbJRN6AOMAXSUR0CLewhK15SndX2UKGgGaAloD0MIHViOkIHNWECUhpRSlGgVTegDaBZHQIu+Q4yXUpd1fZQoaAZoCWgPQwgQyvs4mgswwJSGlFKUaBVL22gWR0CLydsqril0dX2UKGgGaAloD0MIpz/7kSL6LMCUhpRSlGgVS79oFkdAi87vUrkKeHV9lChoBmgJaA9DCEYJ+gu9cWJAlIaUUpRoFU3oA2gWR0CL2BicXm/4dX2UKGgGaAloD0MIVBwHXi3RQkCUhpRSlGgVTegDaBZHQIvfixRl6JJ1fZQoaAZoCWgPQwjaxTTTvUxbQJSGlFKUaBVN6ANoFkdAi+Zu1v2oN3V9lChoBmgJaA9DCBFxcyqZuGFAlIaUUpRoFU3oA2gWR0CL+jQdjoZAdX2UKGgGaAloD0MIVn2utmLvKcCUhpRSlGgVS9loFkdAjAjbDVH4GnV9lChoBmgJaA9DCNBCAkaXw2FAlIaUUpRoFU3oA2gWR0CMGQJtSAH3dX2UKGgGaAloD0MIJF8JpMTmOUCUhpRSlGgVS+FoFkdAjBwfMnqmj3V9lChoBmgJaA9DCPKWqx+bDFlAlIaUUpRoFU3oA2gWR0CMHO/Dcdo4dX2UKGgGaAloD0MIhiAHJcw+YUCUhpRSlGgVTegDaBZHQIyC4It16mh1fZQoaAZoCWgPQwhzZVBt8IVhQJSGlFKUaBVN6ANoFkdAjIqNShrWRXV9lChoBmgJaA9DCGLAkqvYvWNAlIaUUpRoFU3oA2gWR0CM0f3225QQdX2UKGgGaAloD0MI5bhTOlgRVECUhpRSlGgVTegDaBZHQIzVdGCqZMN1fZQoaAZoCWgPQwikx+9t+mlIQJSGlFKUaBVN6ANoFkdAjOQK9wm3OXV9lChoBmgJaA9DCG6LMhtkhktAlIaUUpRoFU3oA2gWR0CM9yXJHRTkdX2UKGgGaAloD0MI+WpHcY4MWUCUhpRSlGgVTegDaBZHQIz4IHgP3BZ1fZQoaAZoCWgPQwiAYI4evxFhQJSGlFKUaBVN6ANoFkdAjQaXeWOZLXV9lChoBmgJaA9DCBEcl3HT9WBAlIaUUpRoFU3oA2gWR0CNT4bEP1+RdX2UKGgGaAloD0MI3/3xXjX8YECUhpRSlGgVTegDaBZHQI1ev7tRekZ1fZQoaAZoCWgPQwhSnQ5kPXNAQJSGlFKUaBVL4GgWR0CNYGACnxaxdX2UKGgGaAloD0MIaLPqc7VbQkCUhpRSlGgVS8xoFkdAjWUR0dRzinV9lChoBmgJaA9DCFr2JLA52ldAlIaUUpRoFU3oA2gWR0CNbpRx95QhdX2UKGgGaAloD0MIRWYucHk2XkCUhpRSlGgVTegDaBZHQI2F0bLlmvp1fZQoaAZoCWgPQwglsaTcfRNYQJSGlFKUaBVN6ANoFkdAjZeVk1/DtXV9lChoBmgJaA9DCDeI1oo2uFNAlIaUUpRoFU3oA2gWR0CNqHqOcUdrdX2UKGgGaAloD0MIiSXl7nNlVECUhpRSlGgVTegDaBZHQI2rtjurp7l1fZQoaAZoCWgPQwgyA5Xx7z1FQJSGlFKUaBVN6ANoFkdAjayTlLeyiXV9lChoBmgJaA9DCGE3bFuUwTnAlIaUUpRoFUv4aBZHQI2wWIGhVVB1fZQoaAZoCWgPQwiFKF/QQkIOwJSGlFKUaBVL4mgWR0CN638stkFwdX2UKGgGaAloD0MItcNfkzXCN8CUhpRSlGgVS81oFkdAje54VARkE3V9lChoBmgJaA9DCJm8AWa+yVNAlIaUUpRoFU3oA2gWR0COEajQiRnwdX2UKGgGaAloD0MIf2d79IbCXECUhpRSlGgVTegDaBZHQI4ZY4+8oQZ1fZQoaAZoCWgPQwidobjjTQ9eQJSGlFKUaBVN6ANoFkdAjl/4Wk8A73V9lChoBmgJaA9DCIMwt3u5PV5AlIaUUpRoFU3oA2gWR0COiRBZZB9kdX2UKGgGaAloD0MI3h0Zq81ZTsCUhpRSlGgVTRgBaBZHQI6KDefqX4V1fZQoaAZoCWgPQwi+9zdor6JRQJSGlFKUaBVN6ANoFkdAjoop79hqkHV9lChoBmgJaA9DCNBhvrwA+V9AlIaUUpRoFU3oA2gWR0COmktzS1E3dX2UKGgGaAloD0MIvW2mQrxHYkCUhpRSlGgVTegDaBZHQI7oe7g88tB1fZQoaAZoCWgPQwjDnKBNDr9cQJSGlFKUaBVN6ANoFkdAjvnJ2MbWE3V9lChoBmgJaA9DCH4BvXDnfl1AlIaUUpRoFU3oA2gWR0CO+7yPuG9IdX2UKGgGaAloD0MI1NLcCmFYYUCUhpRSlGgVTegDaBZHQI8LdEXtSht1fZQoaAZoCWgPQwjW4egq3a0ZwJSGlFKUaBVL02gWR0CPFDHR1HOKdX2UKGgGaAloD0MIvLGgMKjoYECUhpRSlGgVTegDaBZHQI8kV/lQuVZ1fZQoaAZoCWgPQwiu1LMglD5gQJSGlFKUaBVN6ANoFkdAjzXYB3iaRnV9lChoBmgJaA9DCHRiD+1jJQbAlIaUUpRoFUusaBZHQI9BkKXv6TJ1fZQoaAZoCWgPQwhm9Q63Q9FZQJSGlFKUaBVN6ANoFkdAj0klGwzLwHV9lChoBmgJaA9DCGx2pPrOgl5AlIaUUpRoFU3oA2gWR0CPSe+mFajfdX2UKGgGaAloD0MI71aW6CwaYECUhpRSlGgVTegDaBZHQI+HL2Dg62h1fZQoaAZoCWgPQwiamZmZmZdYQJSGlFKUaBVN6ANoFkdAj4mjkuHvdHV9lChoBmgJaA9DCNaNd0fGJF9AlIaUUpRoFU3oA2gWR0CPqAVt4zJqdX2UKGgGaAloD0MIQBNhw9MGWUCUhpRSlGgVTegDaBZHQI/s7ZOBUaR1fZQoaAZoCWgPQwhi9NxCV1FgQJSGlFKUaBVN6ANoFkdAkAlLTQVsUXV9lChoBmgJaA9DCPK0/MBVj19AlIaUUpRoFU3oA2gWR0CQCeN0/4ZddX2UKGgGaAloD0MIJUG4AooJYECUhpRSlGgVTegDaBZHQJASbXf642F1fZQoaAZoCWgPQwje5/hocQlgQJSGlFKUaBVN6ANoFkdAkBltj0+TvHV9lChoBmgJaA9DCAMn28Cd+WFAlIaUUpRoFU3oA2gWR0CQO8wDeTFEdX2UKGgGaAloD0MIYoIavgWSYkCUhpRSlGgVTegDaBZHQJA8o2WIGhV1fZQoaAZoCWgPQwhhinJp/JpfQJSGlFKUaBVN6ANoFkdAkEgKnWJ79nV9lChoBmgJaA9DCHAIVWr2lDBAlIaUUpRoFU0AAWgWR0CQT3ATqSowdX2UKGgGaAloD0MIyLYMOEvKW0CUhpRSlGgVTegDaBZHQJBP+khzNll1fZQoaAZoCWgPQwjgn1Ilyo4ywJSGlFKUaBVL8GgWR0CQU0zUqhDgdX2UKGgGaAloD0MIX5fhP93cXkCUhpRSlGgVTegDaBZHQJBX/+xW1dB1fZQoaAZoCWgPQwgl6C/0iBUyQJSGlFKUaBVL0GgWR0CQW01vES/TdX2UKGgGaAloD0MIQtE8gMX0Y0CUhpRSlGgVTfQCaBZHQJBdcZxaPjp1fZQoaAZoCWgPQwjdeeI5W55YQJSGlFKUaBVN6ANoFkdAkF3YcvM8o3V9lChoBmgJaA9DCNUgzO1eBiNAlIaUUpRoFUvraBZHQJBfxmWdEst1fZQoaAZoCWgPQwhoQpPEksdfQJSGlFKUaBVN6ANoFkdAkGEknTiKi3V9lChoBmgJaA9DCAeynlp9qlpAlIaUUpRoFU3oA2gWR0CQYYDgZTAGdX2UKGgGaAloD0MIT7FqEOaFXUCUhpRSlGgVTegDaBZHQJB+JznzQNV1fZQoaAZoCWgPQwiaX80Bgnk/QJSGlFKUaBVL5mgWR0CQf0cENe+mdX2UKGgGaAloD0MIx9YzhONYYUCUhpRSlGgVTegDaBZHQJCM3gsK9f11fZQoaAZoCWgPQwg4h2u1hw5hQJSGlFKUaBVN6ANoFkdAkK/UHt4RmXV9lChoBmgJaA9DCE+w/zo3YFZAlIaUUpRoFU3oA2gWR0CQwlBIFvAHdX2UKGgGaAloD0MI9dvXgXNJWkCUhpRSlGgVTegDaBZHQJDS+akRBeJ1fZQoaAZoCWgPQwihurn4W/9hQJSGlFKUaBVN6ANoFkdAkQlXqZ+hG3V9lChoBmgJaA9DCJPJqZ3hz2RAlIaUUpRoFU3oA2gWR0CREj81Gb1AdX2UKGgGaAloD0MI7/54r9pOYUCUhpRSlGgVTegDaBZHQJES7AIppex1fZQoaAZoCWgPQwgO9FDbBlRgQJSGlFKUaBVN6ANoFkdAkRdP0Zm7KHV9lChoBmgJaA9DCEYotoKmJl1AlIaUUpRoFU3oA2gWR0CRHTktEofCdX2UKGgGaAloD0MIHm0csRaHXECUhpRSlGgVTegDaBZHQJEg7ixVyWB1fZQoaAZoCWgPQwh/2xMktkhlQJSGlFKUaBVN6ANoFkdAkSMhuGbkO3V9lChoBmgJaA9DCFdBDHTtKVlAlIaUUpRoFU3oA2gWR0CRI4vM8ox6dX2UKGgGaAloD0MIoBov3SRnWkCUhpRSlGgVTegDaBZHQJEllOUMXrN1fZQoaAZoCWgPQwiWsaGb/fdaQJSGlFKUaBVN6ANoFkdAkSc8L8aXKXV9lChoBmgJaA9DCBUDJJpAFTbAlIaUUpRoFUvwaBZHQJE06Yv38Gd1fZQoaAZoCWgPQwgL1c3F38I/QJSGlFKUaBVL/WgWR0CRQi9xIatLdX2UKGgGaAloD0MI2o6pu7KzQECUhpRSlGgVS/NoFkdAkULRt1p0wXV9lChoBmgJaA9DCBUBTu/iQWFAlIaUUpRoFU3oA2gWR0CRRC0yP+4tdX2UKGgGaAloD0MI6KBLOPQ6XECUhpRSlGgVTegDaBZHQJFFMF+uvEF1fZQoaAZoCWgPQwgo84++SQFDQJSGlFKUaBVL/2gWR0CRSOhnanJldX2UKGgGaAloD0MIDeNuEC1zZECUhpRSlGgVTegDaBZHQJFQwKSgXdl1fZQoaAZoCWgPQwihR4yeW9BAQJSGlFKUaBVL7mgWR0CRZ1w6hg3MdX2UKGgGaAloD0MIe6GA7WBkAMCUhpRSlGgVTSABaBZHQJFsyw6hg3N1fZQoaAZoCWgPQwjeWbvtQlJgQJSGlFKUaBVN6ANoFkdAkXEaEeyRjnV9lChoBmgJaA9DCG/0MR8Q81pAlIaUUpRoFU3oA2gWR0CRgc6tknTidX2UKGgGaAloD0MIp60RwThYAECUhpRSlGgVS7poFkdAkYiNqtYCAHV9lChoBmgJaA9DCECmtWlss1tAlIaUUpRoFU3oA2gWR0CRkUDMvAXVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.19.4", "Gym": "0.21.0"}}