|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import einops, einops.layers.torch |
|
import diffusers |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from typing import Tuple, Optional |
|
|
|
import inspect |
|
import os |
|
from functools import partial |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import Tensor, device |
|
|
|
|
|
|
|
class ModelMixin(torch.nn.Module): |
|
r""" |
|
Base class for all models. |
|
[`ModelMixin`] takes care of storing the configuration of the models and handles methods for loading, downloading |
|
and saving models. |
|
- **config_name** ([`str`]) -- A filename under which the model should be stored when calling |
|
[`~models.ModelMixin.save_pretrained`]. |
|
""" |
|
config_name = "new" |
|
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"] |
|
_supports_gradient_checkpointing = False |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
@property |
|
def is_gradient_checkpointing(self) -> bool: |
|
""" |
|
Whether gradient checkpointing is activated for this model or not. |
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
""" |
|
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) |
|
|
|
def enable_gradient_checkpointing(self): |
|
""" |
|
Activates gradient checkpointing for the current model. |
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
""" |
|
if not self._supports_gradient_checkpointing: |
|
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") |
|
self.apply(partial(self._set_gradient_checkpointing, value=True)) |
|
|
|
def disable_gradient_checkpointing(self): |
|
""" |
|
Deactivates gradient checkpointing for the current model. |
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
""" |
|
if self._supports_gradient_checkpointing: |
|
self.apply(partial(self._set_gradient_checkpointing, value=False)) |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, valid: bool, attention_op: Optional[Callable] = None |
|
) -> None: |
|
|
|
|
|
|
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"): |
|
module.set_use_memory_efficient_attention_xformers(valid, attention_op) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
for module in self.children(): |
|
if isinstance(module, torch.nn.Module): |
|
fn_recursive_set_mem_eff(module) |
|
|
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): |
|
r""" |
|
Enable memory efficient attention as implemented in xformers. |
|
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference |
|
time. Speed up at training time is not guaranteed. |
|
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention |
|
is used. |
|
Parameters: |
|
attention_op (`Callable`, *optional*): |
|
Override the default `None` operator for use as `op` argument to the |
|
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention) |
|
function of xFormers. |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import UNet2DConditionModel |
|
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp |
|
>>> model = UNet2DConditionModel.from_pretrained( |
|
... "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16 |
|
... ) |
|
>>> model = model.to("cuda") |
|
>>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp) |
|
``` |
|
""" |
|
self.set_use_memory_efficient_attention_xformers(True, attention_op) |
|
|
|
def disable_xformers_memory_efficient_attention(self): |
|
r""" |
|
Disable memory efficient attention as implemented in xformers. |
|
""" |
|
self.set_use_memory_efficient_attention_xformers(False) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
save_function: Callable = None, |
|
safe_serialization: bool = False, |
|
variant: Optional[str] = None, |
|
): |
|
""" |
|
Save a model and its configuration file to a directory, so that it can be re-loaded using the |
|
`[`~models.ModelMixin.from_pretrained`]` class method. |
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful when in distributed training like |
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on |
|
the main process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one |
|
need to replace `torch.save` by another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `False`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
variant (`str`, *optional*): |
|
If specified, weights are saved in the format pytorch_model.<variant>.bin. |
|
""" |
|
if safe_serialization and not is_safetensors_available(): |
|
raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.") |
|
|
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
model_to_save = self |
|
|
|
|
|
|
|
if is_main_process: |
|
model_to_save.save_config(save_directory) |
|
|
|
|
|
state_dict = model_to_save.state_dict() |
|
|
|
weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME |
|
weights_name = _add_variant(weights_name, variant) |
|
|
|
|
|
if safe_serialization: |
|
safetensors.torch.save_file( |
|
state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"} |
|
) |
|
else: |
|
torch.save(state_dict, os.path.join(save_directory, weights_name)) |
|
|
|
logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}") |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
r""" |
|
Instantiate a pretrained pytorch model from a pre-trained model configuration. |
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train |
|
the model, you should first set it back in training mode with `model.train()`. |
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., |
|
`./my_model_directory/`. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype |
|
will be automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `diffusers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
from_flax (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a Flax checkpoint save file. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
mirror (`str`, *optional*): |
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility |
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. |
|
Please refer to the mirror site for more information. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
|
A map that specifies where each submodule should go. It doesn't need to be refined to each |
|
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the |
|
same device. |
|
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For |
|
more information about each option see [designing a device |
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This |
|
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the |
|
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, |
|
setting this argument to `True` will raise an error. |
|
variant (`str`, *optional*): |
|
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is |
|
ignored when using `from_flax`. |
|
use_safetensors (`bool`, *optional* ): |
|
If set to `True`, the pipeline will forcibly load the models from `safetensors` weights. If set to |
|
`None` (the default). The pipeline will load using `safetensors` if safetensors weights are available |
|
*and* if `safetensors` is installed. If the to `False` the pipeline will *not* use `safetensors`. |
|
<Tip> |
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models). |
|
</Tip> |
|
<Tip> |
|
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use |
|
this method in a firewalled environment. |
|
</Tip> |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) |
|
force_download = kwargs.pop("force_download", False) |
|
from_flax = kwargs.pop("from_flax", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
output_loading_info = kwargs.pop("output_loading_info", False) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
device_map = kwargs.pop("device_map", None) |
|
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) |
|
variant = kwargs.pop("variant", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
if use_safetensors and not is_safetensors_available(): |
|
raise ValueError( |
|
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors" |
|
) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = is_safetensors_available() |
|
allow_pickle = True |
|
|
|
if low_cpu_mem_usage and not is_accelerate_available(): |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if device_map is not None and not is_accelerate_available(): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" |
|
" `device_map=None`. You can install accelerate with `pip install accelerate`." |
|
) |
|
|
|
|
|
if device_map is not None and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `device_map=None`." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
if low_cpu_mem_usage is False and device_map is not None: |
|
raise ValueError( |
|
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" |
|
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." |
|
) |
|
|
|
|
|
config_path = pretrained_model_name_or_path |
|
|
|
user_agent = { |
|
"diffusers": __version__, |
|
"file_type": "model", |
|
"framework": "pytorch", |
|
} |
|
|
|
|
|
config, unused_kwargs, commit_hash = cls.load_config( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
return_commit_hash=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
device_map=device_map, |
|
user_agent=user_agent, |
|
**kwargs, |
|
) |
|
|
|
|
|
model_file = None |
|
if from_flax: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=FLAX_WEIGHTS_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model |
|
|
|
model = load_flax_checkpoint_in_pytorch_model(model, model_file) |
|
else: |
|
if use_safetensors: |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
except IOError as e: |
|
if not allow_pickle: |
|
raise e |
|
pass |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
|
|
if low_cpu_mem_usage: |
|
|
|
with accelerate.init_empty_weights(): |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
if device_map is None: |
|
param_device = "cpu" |
|
state_dict = load_state_dict(model_file, variant=variant) |
|
|
|
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) |
|
if len(missing_keys) > 0: |
|
raise ValueError( |
|
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" |
|
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" |
|
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" |
|
" those weights or else make sure your checkpoint file is correct." |
|
) |
|
|
|
empty_state_dict = model.state_dict() |
|
for param_name, param in state_dict.items(): |
|
accepts_dtype = "dtype" in set( |
|
inspect.signature(set_module_tensor_to_device).parameters.keys() |
|
) |
|
|
|
if empty_state_dict[param_name].shape != param.shape: |
|
raise ValueError( |
|
f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example." |
|
) |
|
|
|
if accepts_dtype: |
|
set_module_tensor_to_device( |
|
model, param_name, param_device, value=param, dtype=torch_dtype |
|
) |
|
else: |
|
set_module_tensor_to_device(model, param_name, param_device, value=param) |
|
else: |
|
|
|
|
|
accelerate.load_checkpoint_and_dispatch(model, model_file, device_map, dtype=torch_dtype) |
|
|
|
loading_info = { |
|
"missing_keys": [], |
|
"unexpected_keys": [], |
|
"mismatched_keys": [], |
|
"error_msgs": [], |
|
} |
|
else: |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
state_dict = load_state_dict(model_file, variant=variant) |
|
|
|
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( |
|
model, |
|
state_dict, |
|
model_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
) |
|
|
|
loading_info = { |
|
"missing_keys": missing_keys, |
|
"unexpected_keys": unexpected_keys, |
|
"mismatched_keys": mismatched_keys, |
|
"error_msgs": error_msgs, |
|
} |
|
|
|
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." |
|
) |
|
elif torch_dtype is not None: |
|
model = model.to(torch_dtype) |
|
|
|
model.register_to_config(_name_or_path=pretrained_model_name_or_path) |
|
|
|
|
|
model.eval() |
|
if output_loading_info: |
|
return model, loading_info |
|
|
|
return model |
|
|
|
@classmethod |
|
def _load_pretrained_model( |
|
cls, |
|
model, |
|
state_dict, |
|
resolved_archive_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=False, |
|
): |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_keys = list(state_dict.keys()) |
|
|
|
expected_keys = list(model_state_dict.keys()) |
|
|
|
original_loaded_keys = loaded_keys |
|
|
|
missing_keys = list(set(expected_keys) - set(loaded_keys)) |
|
unexpected_keys = list(set(loaded_keys) - set(expected_keys)) |
|
|
|
|
|
model_to_load = model |
|
|
|
def _find_mismatched_keys( |
|
state_dict, |
|
model_state_dict, |
|
loaded_keys, |
|
ignore_mismatched_sizes, |
|
): |
|
mismatched_keys = [] |
|
if ignore_mismatched_sizes: |
|
for checkpoint_key in loaded_keys: |
|
model_key = checkpoint_key |
|
|
|
if ( |
|
model_key in model_state_dict |
|
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape |
|
): |
|
mismatched_keys.append( |
|
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) |
|
) |
|
del state_dict[checkpoint_key] |
|
return mismatched_keys |
|
|
|
if state_dict is not None: |
|
|
|
mismatched_keys = _find_mismatched_keys( |
|
state_dict, |
|
model_state_dict, |
|
original_loaded_keys, |
|
ignore_mismatched_sizes, |
|
) |
|
error_msgs = _load_state_dict_into_model(model_to_load, state_dict) |
|
|
|
if len(error_msgs) > 0: |
|
error_msg = "\n\t".join(error_msgs) |
|
if "size mismatch" in error_msg: |
|
error_msg += ( |
|
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." |
|
) |
|
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" |
|
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" |
|
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task" |
|
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a" |
|
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" |
|
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly" |
|
" identical (initializing a BertForSequenceClassification model from a" |
|
" BertForSequenceClassification model)." |
|
) |
|
else: |
|
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") |
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" |
|
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." |
|
) |
|
elif len(mismatched_keys) == 0: |
|
logger.info( |
|
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the" |
|
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions" |
|
" without further training." |
|
) |
|
if len(mismatched_keys) > 0: |
|
mismatched_warning = "\n".join( |
|
[ |
|
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" |
|
for key, shape1, shape2 in mismatched_keys |
|
] |
|
) |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" |
|
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be" |
|
" able to use it for predictions and inference." |
|
) |
|
|
|
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs |
|
|
|
@property |
|
def device(self) -> device: |
|
""" |
|
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same |
|
device). |
|
""" |
|
return get_parameter_device(self) |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: |
|
""" |
|
Get number of (optionally, trainable or non-embeddings) parameters in the module. |
|
Args: |
|
only_trainable (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return only the number of trainable parameters |
|
exclude_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return only the number of non-embeddings parameters |
|
Returns: |
|
`int`: The number of parameters. |
|
""" |
|
|
|
if exclude_embeddings: |
|
embedding_param_names = [ |
|
f"{name}.weight" |
|
for name, module_type in self.named_modules() |
|
if isinstance(module_type, torch.nn.Embedding) |
|
] |
|
non_embedding_parameters = [ |
|
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names |
|
] |
|
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) |
|
else: |
|
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) |
|
|
|
def Downsample(dim, dim_out): |
|
return nn.Conv2d(dim, dim_out, 4, 2, 1) |
|
|
|
class Residual(nn.Sequential): |
|
def forward(self, input): |
|
x = input |
|
for module in self: |
|
x = module(x) |
|
return x + input |
|
|
|
def ConvLayer(dim, dim_out, *, kernel_size=3, groups=32): |
|
return nn.Sequential( |
|
nn.GroupNorm(groups, dim), |
|
nn.SiLU(), |
|
nn.Conv2d(dim, dim_out, kernel_size=kernel_size, padding=kernel_size//2), |
|
) |
|
|
|
def ResnetBlock(dim, *, kernel_size=3, groups=32): |
|
return Residual( |
|
ConvLayer(dim, dim, kernel_size=kernel_size, groups=groups), |
|
ConvLayer(dim, dim, kernel_size=kernel_size, groups=groups), |
|
) |
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim, out_dim, *, heads=8, key_dim=32, value_dim=32): |
|
super().__init__() |
|
self.dim = dim |
|
self.out_dim = dim |
|
self.heads = heads |
|
self.key_dim = key_dim |
|
|
|
self.to_k = nn.Linear(dim, key_dim) |
|
self.to_v = nn.Linear(dim, value_dim) |
|
self.to_q = nn.Linear(dim, key_dim * heads) |
|
self.to_out = nn.Linear(value_dim * heads, out_dim) |
|
|
|
def forward(self, x): |
|
shape = x.shape |
|
x = einops.rearrange(x, 'b c ... -> b (...) c') |
|
|
|
k = self.to_k(x) |
|
v = self.to_v(x) |
|
q = self.to_q(x) |
|
q = einops.rearrange(q, 'b n (h c) -> b (n h) c', h=self.heads) |
|
if hasattr(nn.functional, "scaled_dot_product_attention"): |
|
result = F.scaled_dot_product_attention(q, k, v) |
|
else: |
|
attention_scores = torch.bmm(q, k.transpose(-2, -1)) |
|
attention_probs = torch.softmax(attention_scores.float() / math.sqrt(self.key_dim), dim=-1).type(attention_scores.dtype) |
|
result = torch.bmm(attention_probs, v) |
|
result = einops.rearrange(result, 'b (n h) c -> b n (h c)', h=self.heads) |
|
out = self.to_out(result) |
|
|
|
out = einops.rearrange(out, 'b n c -> b c n') |
|
out = torch.reshape(out, (shape[0], self.out_dim, *shape[2:])) |
|
return out |
|
|
|
def SelfAttentionBlock(dim, attention_dim, *, heads=8, groups=32): |
|
if not attention_dim: |
|
attention_dim = dim // heads |
|
return Residual( |
|
nn.GroupNorm(groups, dim), |
|
SelfAttention(dim, dim, heads=heads, key_dim=attention_dim, value_dim=attention_dim), |
|
) |
|
|
|
class Discriminator2D(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 8, |
|
out_channels: int = 1, |
|
block_out_channels: Tuple[int] = (128, 256, 512, 1024, 1024, 1024), |
|
block_repeats: Tuple[int] = (2, 2, 2, 2, 2), |
|
downsample_blocks: Tuple[int] = (0, 1, 2), |
|
attention_blocks: Tuple[int] = (1, 2, 3, 4), |
|
mlp_hidden_channels: Tuple[int] = (2048, 2048, 2048), |
|
mlp_uses_norm: bool = True, |
|
attention_dim: Optional[int] = None, |
|
attention_heads: int = 8, |
|
groups: int = 32, |
|
embedding_dim: int = 768, |
|
): |
|
super().__init__() |
|
|
|
self.blocks = nn.ModuleList([]) |
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], 7, padding=3) |
|
|
|
for i in range(0, len(block_out_channels) - 1): |
|
block_in = block_out_channels[i] |
|
block_out = block_out_channels[i + 1] |
|
block = nn.Sequential() |
|
for j in range(0, block_repeats[i]): |
|
if i in attention_blocks: |
|
block.append(SelfAttentionBlock(block_in, attention_dim, heads=attention_heads, groups=groups)) |
|
block.append(ResnetBlock(block_in, groups=groups)) |
|
if i in downsample_blocks: |
|
block.append(Downsample(block_in, block_out)) |
|
elif block_in != block_out: |
|
block.append(nn.Conv2d(block_in, block_out, 1)) |
|
self.blocks.append(block) |
|
|
|
|
|
|
|
self.to_out = nn.Sequential() |
|
d_channels = 2 * sum(block_out_channels[1:]) + embedding_dim |
|
for c in mlp_hidden_channels: |
|
self.to_out.append(nn.Linear(d_channels, c)) |
|
if mlp_uses_norm: |
|
self.to_out.append(nn.GroupNorm(groups, c)) |
|
self.to_out.append(nn.SiLU()) |
|
d_channels = c |
|
self.to_out.append(nn.Linear(d_channels, out_channels)) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
|
|
def disable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, x, encoder_hidden_states): |
|
x = self.conv_in(x) |
|
if self.config.embedding_dim != 0: |
|
d = einops.reduce(encoder_hidden_states, 'b n c -> b c', 'mean') |
|
else: |
|
d = torch.zeros([x.shape[0], 0], device=x.device, dtype=x.dtype) |
|
for block in self.blocks: |
|
if self.gradient_checkpointing: |
|
x = torch.utils.checkpoint.checkpoint(block, x) |
|
else: |
|
x = block(x) |
|
x_mean = einops.reduce(x, 'b c ... -> b c', 'mean') |
|
x_max = einops.reduce(x, 'b c ... -> b c', 'max') |
|
d = torch.cat([d, x_mean, x_max], dim=-1) |
|
return self.to_out(d) |
|
|
|
|