import tkinter as tk import os import sys import sysconfig import subprocess from tkinter import * from tkinter import ttk import tkinter.filedialog as fd import json from tkinter import messagebox from PIL import Image, ImageTk,ImageOps,ImageDraw import glob import converters import shutil from datetime import datetime import pyperclip import random import customtkinter as ctk import random import subprocess from pathlib import Path from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionDepth2ImgPipeline ctk.set_appearance_mode("dark") ctk.set_default_color_theme("blue") #work in progress code, not finished, credits will be added at a later date. #class to make a generated image preview for the playground window, should open a new window alongside the playground window class GeneratedImagePreview(ctk.CTkToplevel): def __init__(self, parent, *args, **kwargs): ctk.CTkToplevel.__init__(self, parent, *args, **kwargs) #title self.title("Viewfinder") self.parent = parent self.configure(bg_color="transparent") #frame self.frame = ctk.CTkFrame(self, bg_color="transparent") self.frame.pack(fill="both", expand=True) #add tip label self.tip_label = ctk.CTkLabel(self.frame,text='Press the right arrow or enter to generate a new image', bg_color="transparent") self.tip_label.pack(fill="both", expand=True) #image self.image_preview_label = ctk.CTkLabel(self.frame,text='', bg_color="transparent") self.image_preview_label.pack(fill="both", expand=True) # run on close self.protocol("WM_DELETE_WINDOW", self.on_close) #bind next image to right arrow self.bind("", lambda event: self.next_image()) #bind to enter to generate a new image self.bind("", lambda event: self.next_image()) def next_image(self, event=None): self.parent.generate_next_image() def on_close(self): self.parent.generation_window = None self.destroy() def ingest_image(self, image): self.geometry(f"{image.width + 50}x{image.height + 50}") self.image_preview_label.configure(image=ctk.CTkImage(image,size=(image.width,image.height))) #resize window #class to make a concept top level window class ConceptWidget(ctk.CTkFrame): #a widget that holds a concept and opens a concept window when clicked def __init__(self, parent, concept=None,width=150,height=150, *args, **kwargs): ctk.CTkFrame.__init__(self, parent, *args, **kwargs) self.parent = parent self.concept = concept #if concept is none, make a new concept if self.concept == None: self.default_image_preview = Image.open("resources/stableTuner_logo.png").resize((150, 150), Image.Resampling.LANCZOS) #self.default_image_preview = ImageTk.PhotoImage(self.default_image_preview) self.concept_name = "New Concept" self.concept_data_path = "" self.concept_class_name = "" self.concept_class_path = "" self.flip_p = '' self.concept_do_not_balance = False self.process_sub_dirs = False self.image_preview = self.default_image_preview #create concept self.concept = Concept(self.concept_name, self.concept_data_path, self.concept_class_name, self.concept_class_path,self.flip_p, self.concept_do_not_balance,self.process_sub_dirs, self.image_preview, None) else: self.concept = concept self.concept.image_preview = self.make_image_preview() self.width = width self.height = height self.configure(fg_color='transparent',border_width=0) self.concept_frame = ctk.CTkFrame(self, width=400, height=300,fg_color='transparent',border_width=0) self.concept_frame.grid_columnconfigure(0, weight=1) self.concept_frame.grid_rowconfigure(0, weight=1) self.concept_frame.grid(row=0, column=0, sticky="nsew") #concept image #if self.concept.image_preview is type(str): # self.concept.image_preview = Image.open(self.concept.image_preview) self.concept_image_label = ctk.CTkLabel(self.concept_frame,text='',width=width,height=height, image=ctk.CTkImage(self.concept.image_preview,size=(100,100))) self.concept_image_label.grid(row=0, column=0, sticky="nsew") #ctk button with name as text and image as preview self.concept_button = ctk.CTkLabel(self.concept_frame, text=self.concept.concept_name,bg_color='transparent', compound="top") self.concept_button.grid(row=1, column=0, sticky="nsew") #bind the button to open a concept window self.concept_button.bind("", lambda event: self.open_concept_window()) self.concept_image_label.bind("", lambda event: self.open_concept_window()) def resize_widget(self,width,height): self.image_preview = self.image_preview.configure(size=(width,height)) self.concept_image_label.configure(width=width,height=height,image=self.image_preview) def make_image_preview(self): def add_corners(im, rad): circle = Image.new('L', (rad * 2, rad * 2), 0) draw = ImageDraw.Draw(circle) draw.ellipse((0, 0, rad * 2, rad * 2), fill=255) alpha = Image.new('L', im.size, "white") w, h = im.size alpha.paste(circle.crop((0, 0, rad, rad)), (0, 0)) alpha.paste(circle.crop((0, rad, rad, rad * 2)), (0, h - rad)) alpha.paste(circle.crop((rad, 0, rad * 2, rad)), (w - rad, 0)) alpha.paste(circle.crop((rad, rad, rad * 2, rad * 2)), (w - rad, h - rad)) im.putalpha(alpha) return im path = self.concept.concept_path icon = 'resources/stableTuner_icon.png' #create a photoimage object of the image in the path icon = Image.open(icon) #resize the image image = icon.resize((150, 150), Image.Resampling.LANCZOS) if path != "" and path != None: if os.path.exists(path): files = [] #if there are sub directories if self.concept.process_sub_dirs: #get a list of all sub directories sub_dirs = [f.path for f in os.scandir(path) if f.is_dir()] #if there are sub directories if len(sub_dirs) != 0: #collect all images in sub directories for sub_dir in sub_dirs: #collect the full path of all files in the sub directory to files files += [os.path.join(sub_dir, f) for f in os.listdir(sub_dir)] #if there are no sub directories else: files = [os.path.join(path, f) for f in os.listdir(path)] #omit sub directories files = [f for f in files if not os.path.isdir(f)] if len(files) != 0: for i in range(4): #get an image from the path import random #filter files for images files = [f for f in files if (f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")) and not f.endswith("-masklabel.png") and not f.endswith("-depth.png")] if len(files) != 0: rand = random.choice(files) image_path = rand #remove image_path from files if len(files) > 4: files.remove(rand) #files.pop(image_path) #open the image #print(image_path) image_to_add = Image.open(image_path) #resize the image to 38x38 #resize to 150x150 closest to the original aspect ratio image_to_add.thumbnail((75, 75), Image.Resampling.LANCZOS) #decide where to put the image if i == 0: #top left image.paste(image_to_add, (0, 0)) elif i == 1: #top right image.paste(image_to_add, (75, 0)) elif i == 2: #bottom left image.paste(image_to_add, (0, 75)) elif i == 3: #bottom right image.paste(image_to_add, (75, 75)) image = add_corners(image, 30) #convert the image to a photoimage #image.show() newImage=ctk.CTkImage(image,size=(100,100)) #print(image) self.image_preview = image return image def open_concept_window(self, event=None): #open a concept window self.concept_window = ConceptWindow(parent=self.parent, conceptWidget=self, concept=self.concept) self.concept_window.mainloop() def update_button(self): #update the button with the new concept name self.concept_button.configure(text=self.concept.concept_name) #update the preview image self.concept_image_label.configure(image=ctk.CTkImage(self.concept.image_preview,size=(100,100))) class ConceptWindow(ctk.CTkToplevel): #init function def __init__(self, parent,conceptWidget,concept,*args, **kwargs): ctk.CTkToplevel.__init__(self, parent, *args, **kwargs) #set title self.title("Concept Editor") self.parent = parent self.conceptWidget = conceptWidget self.concept = concept self.geometry("576x297") self.resizable(False, False) #self.protocol("WM_DELETE_WINDOW", self.on_close) self.wait_visibility() self.grab_set() self.focus_set() self.default_image_preview = Image.open("resources/stableTuner_icon.png").resize((150, 150), Image.Resampling.LANCZOS) #self.default_image_preview = ImageTk.PhotoImage(self.default_image_preview) #make a frame for the concept window self.concept_frame = ctk.CTkFrame(self, width=600, height=300) self.concept_frame.grid(row=0, column=0, sticky="nsew",padx=10,pady=10) self.concept_frame_subframe=ctk.CTkFrame(self.concept_frame, width=600, height=300) #4 column grid #self.concept_frame.grid_columnconfigure(0, weight=1) #self.concept_frame.grid_columnconfigure(1, weight=5) #self.concept_frame.grid_columnconfigure(2, weight=1) #self.concept_frame.grid_columnconfigure(3, weight=3) #make a label for concept name self.concept_name_label = ctk.CTkLabel(self.concept_frame_subframe, text="Dataset Token/Name:") self.concept_name_label.grid(row=0, column=0, sticky="nsew",padx=5,pady=5) #make a entry box for concept name self.concept_name_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200) #create right click menu self.concept_name_entry.bind("", self.create_right_click_menu) self.concept_name_entry.grid(row=0, column=1, sticky="e",padx=5,pady=5) self.concept_name_entry.insert(0, self.concept.concept_name) #make a label for concept path self.concept_path_label = ctk.CTkLabel(self.concept_frame_subframe, text="Data Path:") self.concept_path_label.grid(row=1, column=0, sticky="nsew",padx=5,pady=5) #make a entry box for concept path self.concept_path_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200) #create right click menu self.concept_path_entry.bind("", self.create_right_click_menu) self.concept_path_entry.grid(row=1, column=1, sticky="e",padx=5,pady=5) #on focus out, update the preview image self.concept_path_entry.bind("", lambda event: self.update_preview_image(self.concept_path_entry)) self.concept_path_entry.insert(0, self.concept.concept_path) #make a button to browse for concept path self.concept_path_button = ctk.CTkButton(self.concept_frame_subframe,width=30, text="...", command=lambda: self.browse_for_path(self.concept_path_entry)) self.concept_path_button.grid(row=1, column=2, sticky="w",padx=5,pady=5) #make a label for Class Name self.class_name_label = ctk.CTkLabel(self.concept_frame_subframe, text="Class Name:") self.class_name_label.grid(row=2, column=0, sticky="nsew",padx=5,pady=5) #make a entry box for Class Name self.class_name_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200) #create right click menu self.class_name_entry.bind("", self.create_right_click_menu) self.class_name_entry.grid(row=2, column=1, sticky="e",padx=5,pady=5) self.class_name_entry.insert(0, self.concept.concept_class_name) #make a label for Class Path self.class_path_label = ctk.CTkLabel(self.concept_frame_subframe, text="Class Path:") self.class_path_label.grid(row=3, column=0, sticky="nsew",padx=5,pady=5) #make a entry box for Class Path self.class_path_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200) #create right click menu self.class_path_entry.bind("", self.create_right_click_menu) self.class_path_entry.grid(row=3, column=1, sticky="e",padx=5,pady=5) self.class_path_entry.insert(0, self.concept.concept_class_path) #make a button to browse for Class Path self.class_path_button = ctk.CTkButton(self.concept_frame_subframe,width=30, text="...", command=lambda: self.browse_for_path(entry_box=self.class_path_entry)) self.class_path_button.grid(row=3, column=2, sticky="w",padx=5,pady=5) #entry and label for flip probability self.flip_probability_label = ctk.CTkLabel(self.concept_frame_subframe, text="Flip Probability:") self.flip_probability_label.grid(row=4, column=0, sticky="nsew",padx=5,pady=5) self.flip_probability_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200,placeholder_text="0.0 - 1.0") self.flip_probability_entry.grid(row=4, column=1, sticky="e",padx=5,pady=5) if self.concept.flip_p != '': self.flip_probability_entry.insert(0, self.concept.flip_p) #self.flip_probability_entry.bind("", self.create_right_click_menu) #make a label for dataset balancingprocess_sub_dirs self.balance_dataset_label = ctk.CTkLabel(self.concept_frame_subframe, text="Don't Balance Dataset") self.balance_dataset_label.grid(row=5, column=0, sticky="nsew",padx=5,pady=5) #make a switch to enable or disable dataset balancing self.balance_dataset_switch = ctk.CTkSwitch(self.concept_frame_subframe, text="", variable=tk.BooleanVar()) self.balance_dataset_switch.grid(row=5, column=1, sticky="e",padx=5,pady=5) if self.concept.concept_do_not_balance == True: self.balance_dataset_switch.toggle() self.process_sub_dirs = ctk.CTkLabel(self.concept_frame_subframe, text="Search Sub-Directories") self.process_sub_dirs.grid(row=6, column=0, sticky="nsew",padx=5,pady=5) #make a switch to enable or disable dataset balancing self.process_sub_dirs_switch = ctk.CTkSwitch(self.concept_frame_subframe, text="", variable=tk.BooleanVar()) self.process_sub_dirs_switch.grid(row=6, column=1, sticky="e",padx=5,pady=5) if self.concept.process_sub_dirs == True: self.process_sub_dirs_switch.toggle() #self.balance_dataset_switch.set(self.concept.concept_do_not_balance) #add image preview self.image_preview_label = ctk.CTkLabel(self.concept_frame_subframe,text='', width=150, height=150,image=ctk.CTkImage(self.default_image_preview,size=(150,150))) self.image_preview_label.grid(row=0, column=4,rowspan=5, sticky="nsew",padx=5,pady=5) if self.concept.image_preview != None or self.concept.image_preview != "": #print(self.concept.image_preview) self.update_preview_image(entry=None,path=None,pil_image=self.concept.image_preview) elif self.concept.concept_data_path != "": self.update_preview_image(entry=None,path=self.concept_data_path) #self.image_container = self.image_preview_label.create_image(0, 0, anchor="nw", image=test_image) #make a save button self.save_button = ctk.CTkButton(self.concept_frame_subframe, text="Save", command=self.save) self.save_button.grid(row=6, column=3,columnspan=3,rowspan=1, sticky="nsew",padx=10,pady=10) #make a delete button #self.delete_button = ctk.CTkButton(self.concept_frame_subframe, text="Delete", command=self.delete) #self.delete_button.grid(row=6, column=3,columnspan=2, sticky="nsew") self.concept_frame_subframe.pack(fill="both", expand=True) #placeholder hack focus in and out of the entry box flip probability def create_right_click_menu(self, event): #create a menu self.menu = Menu(self.master, tearoff=0) self.menu.config(font=("Segoe UI", 15)) #set dark colors for the menu self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff") #add commands to the menu self.menu.add_command(label="Cut", command=lambda: self.focus_get().event_generate("<>")) self.menu.add_command(label="Copy", command=lambda: self.focus_get().event_generate("<>")) self.menu.add_command(label="Paste", command=lambda: self.focus_get().event_generate("<>")) self.menu.add_command(label="Select All", command=lambda: self.focus_get().event_generate("<>")) #display the menu try: self.menu.tk_popup(event.x_root, event.y_root) finally: #make sure to release the grab (Tk 8.0a1 only) self.menu.grab_release() def delete(self): del self.concept self.conceptWidget.destroy() del self.conceptWidget self.destroy() #function to update image preview on change def update_preview_image(self, entry=None, path=None, pil_image=None): def add_corners(im, rad): circle = Image.new('L', (rad * 2, rad * 2), 0) draw = ImageDraw.Draw(circle) draw.ellipse((0, 0, rad * 2, rad * 2), fill=255) alpha = Image.new('L', im.size, "white") w, h = im.size alpha.paste(circle.crop((0, 0, rad, rad)), (0, 0)) alpha.paste(circle.crop((0, rad, rad, rad * 2)), (0, h - rad)) alpha.paste(circle.crop((rad, 0, rad * 2, rad)), (w - rad, 0)) alpha.paste(circle.crop((rad, rad, rad * 2, rad * 2)), (w - rad, h - rad)) im.putalpha(alpha) return im #check if entry has changed if entry != None and path == None : #get the path from the entry path = entry.get() #get the path from the entry #path = event.widget.get() #canvas = self.canvas #image_container = self.image_container icon = 'resources/stableTuner_icon.png' #create a photoimage object of the image in the path icon = Image.open(icon) #resize the image image = icon.resize((150, 150), Image.Resampling.LANCZOS) if path != "" and path != None: if os.path.exists(path): files = [] #if there are sub directories in the path if self.concept.process_sub_dirs or self.process_sub_dirs_switch.get() == 1: #get a list of all sub directories sub_dirs = [f.path for f in os.scandir(path) if f.is_dir()] #if there are sub directories if len(sub_dirs) != 0: #collect all images in sub directories for sub_dir in sub_dirs: #collect the full path of all files in the sub directory to files files += [os.path.join(sub_dir, f) for f in os.listdir(sub_dir)] #if there are no sub directories else: files = [os.path.join(path, f) for f in os.listdir(path)] #omit sub directories files = [f for f in files if not os.path.isdir(f)] if len(files) != 0: for i in range(4): #get an image from the path import random #filter files for images files = [f for f in files if (f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")) and not f.endswith("-masklabel.png") and not f.endswith("-depth.png")] if len(files) != 0: rand = random.choice(files) image_path = os.path.join(path,rand) #remove image_path from files if len(files) > 4: files.remove(rand) #files.pop(image_path) #open the image #print(image_path) image_to_add = Image.open(image_path) #resize the image to 38x38 #resize to 150x150 closest to the original aspect ratio image_to_add.thumbnail((75, 75), Image.Resampling.LANCZOS) #decide where to put the image if i == 0: #top left image.paste(image_to_add, (0, 0)) elif i == 1: #top right image.paste(image_to_add, (75, 0)) elif i == 2: #bottom left image.paste(image_to_add, (0, 75)) elif i == 3: #bottom right image.paste(image_to_add, (75, 75)) add_corners(image, 30) #convert the image to a photoimage #image.show() if pil_image != None: image = pil_image #if image is of type PIL.Image. newImage=ctk.CTkImage(image,size=(150,150)) self.image_preview = image self.image_preview_label.configure(image=newImage) #function to browse for concept path def browse_for_path(self,entry_box): #get the path from the user path = fd.askdirectory() #set the path to the entry box #delete entry box text entry_box.focus_set() entry_box.delete(0, tk.END) entry_box.insert(0, path) self.focus_set() #save the concept def save(self): #get the concept name concept_name = self.concept_name_entry.get() #get the concept path concept_path = self.concept_path_entry.get() #get the class name class_name = self.class_name_entry.get() #get the class path class_path = self.class_path_entry.get() #get the flip probability flip_p = self.flip_probability_entry.get() #get the dataset balancing balance_dataset = self.balance_dataset_switch.get() #create the concept process_sub_dirs = self.process_sub_dirs_switch.get() #image preview image_preview = self.image_preview #get the main window image_preview_label = self.image_preview_label #update the concept self.concept.update(concept_name, concept_path, class_name, class_path,flip_p,balance_dataset,process_sub_dirs,image_preview,image_preview_label) self.conceptWidget.update_button() #close the window self.destroy() #class of the concept class Concept: def __init__(self, concept_name, concept_path, class_name, class_path,flip_p, balance_dataset=None,process_sub_dirs=None,image_preview=None, image_container=None): if concept_name == None: concept_name = "" if concept_path == None: concept_path = "" if class_name == None: class_name = "" if class_path == None: class_path = "" if flip_p == None: flip_p = "" if balance_dataset == None: balance_dataset = False if process_sub_dirs == None: process_sub_dirs = False if image_preview == None: image_preview = "" if image_container == None: image_container = "" self.concept_name = concept_name self.concept_path = concept_path self.concept_class_name = class_name self.concept_class_path = class_path self.flip_p = flip_p self.concept_do_not_balance = balance_dataset self.image_preview = image_preview self.image_container = image_container self.process_sub_dirs = process_sub_dirs #update the concept def update(self, concept_name, concept_path, class_name, class_path,flip_p,balance_dataset,process_sub_dirs, image_preview, image_container): self.concept_name = concept_name self.concept_path = concept_path self.concept_class_name = class_name self.concept_class_path = class_path self.flip_p = flip_p self.image_preview = image_preview self.image_container = image_container self.concept_do_not_balance = balance_dataset self.image_preview = image_preview self.image_container = image_container self.process_sub_dirs = process_sub_dirs #get the cocept details def get_details(self): return self.concept_name, self.concept_path, self.concept_class_name, self.concept_class_path,self.flip_p, self.concept_do_not_balance,self.process_sub_dirs, self.image_preview, self.image_container #class to make popup right click menu with select all, copy, paste, cut, and delete when right clicked on an entry box class DynamicGrid(ctk.CTkFrame): def __init__(self, parent, *args, **kwargs): ctk.CTkFrame.__init__(self, parent, *args, **kwargs) self.text = tk.Text(self, wrap="char", borderwidth=0, highlightthickness=0, state="disabled") self.text.pack(fill="both", expand=True) self.boxes = [] def add_box(self, color=None): #bg = color if color else random.choice(("red", "orange", "green", "blue", "violet")) box = ctk.CTkFrame(self.text,width=100, height=100) #add a ctkbutton to the frame #ctk.CTkButton(box,text="test",command=lambda:print("test")).pack() #add a ctklabel to the frame ctk.CTkLabel(box,text="test").pack() #add a ctkentry to the frame ctk.CTkEntry(box).pack() #add a ctkcombobox to the frame #add a button remove the frame ctk.CTkButton(box,text="remove",command=lambda:self.remove_box(box)).pack() self.boxes.append(box) self.text.configure(state="normal") self.text.window_create("end", window=box) self.text.configure(state="disabled") def remove_box(self,box): self.boxes.remove(box) box.destroy() self.text.configure(state="normal") self.text.delete("1.0", "end") for box in self.boxes: self.text.window_create("end", window=box) self.text.configure(state="disabled") #class to make a title bar for the window instead of the default one with the minimize, maximize, and close buttons class ScrollableFrame(ttk.Frame): def __init__(self, container, *args, **kwargs): super().__init__(container, *args, **kwargs) #self.pack(fill="both", expand=True) self.grid(row=0,column=0,sticky="nsew") s = ttk.Style() s.configure('new.TFrame', background='#242424',borderwidth=0,highlightthickness=0) self.configure(style='new.TFrame') self.canvas = tk.Canvas(self,bg='#242424') self.canvas.config(bg="#333333",highlightthickness=0,borderwidth=0,highlightbackground="#333333") self.scrollbar = ctk.CTkScrollbar( self, orientation="vertical", command=self.canvas.yview,bg_color="#333333", width=10, corner_radius=10) #s = ttk.Style() #s.configure('new.TFrame', background='#242424',borderwidth=0,highlightthickness=0) self.scrollable_frame = ttk.Frame(self.canvas,style='new.TFrame') self.scrollable_frame.grid_columnconfigure(0, weight=1) self.scrollable_frame.grid_columnconfigure(1, weight=1) #set background color of the scrollable frame #self.scrollable_frame.config(background="#333333") self.scrollable_frame.bind("", lambda *args, **kwargs: self.canvas.configure( scrollregion=self.canvas.bbox("all"))) #resize the scrollable frame to the size of the window capped at 1000x1000 self.scrollable_frame.bind("", lambda e: self.canvas.configure(width=min(750, e.width), height=min(750, e.height))) self.bind_all("", self._on_mousewheel) self.bind("", lambda *args, **kwargs: self.unbind_all("")) self.canvas.create_window((0, 0), window=self.scrollable_frame, anchor="nw") self.canvas.configure(yscrollcommand=self.scrollbar.set) self.canvas.pack(side="left", fill="both", expand=True) self.scrollbar.pack(side="right", fill="y") def _on_mousewheel(self, event): self.canvas.yview_scroll(-1 * round(event.delta / 120), "units") def update_scroll_region(self): self.canvas.configure(scrollregion=self.canvas.bbox("all")) class CreateToolTip(object): """ create a tooltip for a given widget """ def __init__(self, widget, text='widget info'): self.waittime = 500 #miliseconds self.wraplength = 180 #pixels self.widget = widget #parent of the widget #hack to get the master of the app self.parent = widget.winfo_toplevel() self.text = text self.widget.bind("", self.enter) self.widget.bind("", self.leave) self.widget.bind("", self.leave) self.id = None self.tw = None def enter(self, event=None): self.schedule() def leave(self, event=None): self.unschedule() self.hidetip() def schedule(self): self.unschedule() self.id = self.widget.after(self.waittime, self.showtip) def unschedule(self): id = self.id self.id = None if id: self.widget.after_cancel(id) def showtip(self, event=None): x = y = 0 x, y, cx, cy = self.widget.bbox("insert") x += self.widget.winfo_rootx() + 50 y += self.widget.winfo_rooty() + 50 # creates a toplevel window self.tw = ctk.CTkToplevel(self.widget) #self.tw.wm_attributes("-topmost", 1) #self.parent.wm_attributes("-topmost", 0) # Leaves only the label and removes the app window self.tw.wm_overrideredirect(True) self.tw.wm_geometry("+%d+%d" % (x, y)) #top most label = ctk.CTkLabel(self.tw, text=self.text, justify='left', wraplength = self.wraplength) label.pack(padx=10, pady=10 ) def hidetip(self): tw = self.tw self.tw= None if tw: tw.destroy() class App(ctk.CTk): def __init__(self): super().__init__() try: latest_git_hash = subprocess.check_output(["git", "ls-remote", "http://github.com/RossM/StableTuner.git","main"], cwd=Path(__file__).resolve().parent).strip().decode()[0:7] #check if configs folder exists print("Latest git hash: " + latest_git_hash) except: pass if not os.path.exists("configs"): os.makedirs("configs") self.grid_columnconfigure(1, weight=1) self.grid_columnconfigure((2, 3), weight=0) self.grid_rowconfigure((0, 1, 2), weight=1) self.geometry(f"{1100}x{685}") self.stableTune_icon =PhotoImage(master=self,file = "resources/stableTuner_icon.png") self.iconphoto(False, self.stableTune_icon) self.dark_mode_var = "#1e2124" self.dark_purple_mode_var = "#1B0F1B" self.dark_mode_title_var = "#7289da" self.dark_mode_button_pressed_var = "#BB91B6" self.dark_mode_button_var = "#8ea0e1" self.dark_mode_text_var = "#c6c7c8" self.title("StableTuner") self.configure(cursor="left_ptr") #resizable window self.resizable(True, True) self.create_default_variables() #check if stableTuner.cfg exists if not os.path.exists("configs/stableTuner_hash.cfg"): #create stableTuner.cfg and write the latest git hash with open("configs/stableTuner_hash.cfg", "w") as f: f.write(latest_git_hash) else: #read stableTuner.cfg with open("configs/stableTuner_hash.cfg", "r") as f: old_git_hash = f.read() try: #check if the latest git hash is the same as the one in stableTuner.cfg if latest_git_hash != old_git_hash: #if not the same, delete the old stableTuner.cfg and create a new one with the latest git hash self.update_available = True except: self.update_available = False self.sidebar_frame = ctk.CTkFrame(self, width=140, corner_radius=0) self.sidebar_frame.grid(row=0, column=0, rowspan=10, sticky="nsew") self.logo_img = ctk.CTkImage(Image.open("resources/stableTuner_logo.png").resize((300, 300), Image.Resampling.LANCZOS),size=(80,80)) self.logo_img = ctk.CTkLabel(self.sidebar_frame, image=self.logo_img, text='', height=50,width=50, font=ctk.CTkFont(size=15, weight="bold")) self.logo_img.grid(row=0, column=0, padx=20, pady=20) self.logo_label = ctk.CTkLabel(self.sidebar_frame, text="StableTuner", font=ctk.CTkFont(size=20, weight="bold")) self.logo_label.place(x=90, y=105, anchor="n") self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold")) self.empty_label.grid(row=1, column=0, padx=0, pady=0) self.sidebar_button_1 = ctk.CTkButton(self.sidebar_frame,text='General Settings',command=self.general_nav_button_event) self.sidebar_button_1.grid(row=2, column=0, padx=20, pady=5) self.sidebar_button_2 = ctk.CTkButton(self.sidebar_frame,text='Trainer Settings',command=self.training_nav_button_event) self.sidebar_button_2.grid(row=3, column=0, padx=20, pady=5) self.sidebar_button_3 = ctk.CTkButton(self.sidebar_frame,text='Dataset Settings',command=self.dataset_nav_button_event) self.sidebar_button_3.grid(row=4, column=0, padx=20, pady=5) self.sidebar_button_4 = ctk.CTkButton(self.sidebar_frame,text='Sampling Settings',command=self.sampling_nav_button_event) self.sidebar_button_4.grid(row=5, column=0, padx=20, pady=5) self.sidebar_button_5 = ctk.CTkButton(self.sidebar_frame,text='Data',command=self.data_nav_button_event) self.sidebar_button_5.grid(row=6, column=0, padx=20, pady=5) self.sidebar_button_6 = ctk.CTkButton(self.sidebar_frame,text='Model Playground',command=self.playground_nav_button_event) self.sidebar_button_6.grid(row=7, column=0, padx=20, pady=5) self.sidebar_button_7 = ctk.CTkButton(self.sidebar_frame,text='Toolbox',command=self.toolbox_nav_button_event) self.sidebar_button_7.grid(row=8, column=0, padx=20, pady=5) #empty label self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold")) self.empty_label.grid(row=9, column=0, padx=0, pady=0) #empty label if self.update_available: self.sidebar_button_11 = ctk.CTkButton(self.sidebar_frame,text='Update Available',fg_color='red',hover_color='darkred',command=self.update_ST) self.sidebar_button_11.grid(row=12, column=0, padx=20, pady=5) else: self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold")) self.empty_label.grid(row=10, column=0, padx=0, pady=0) #empty label self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold")) self.empty_label.grid(row=11, column=0, padx=0, pady=0) self.sidebar_button_11 = ctk.CTkButton(self.sidebar_frame,text='Caption Buddy',command=self.caption_buddy) self.sidebar_button_11.grid(row=13, column=0, padx=20, pady=5) self.sidebar_button_12 = ctk.CTkButton(self.sidebar_frame,text='Start Training!', command=lambda : self.process_inputs(export=False)) self.sidebar_button_12.bind("", self.create_right_click_menu_export) self.sidebar_button_12.grid(row=14, column=0, padx=20, pady=5) self.general_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent') self.general_frame.grid_columnconfigure(0, weight=5) self.general_frame.grid_columnconfigure(1, weight=10) self.general_frame_subframe = ctk.CTkFrame(self.general_frame,width=300, corner_radius=20) self.general_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20) self.general_frame_subframe_side_guide = ctk.CTkFrame(self.general_frame,width=250, corner_radius=20) self.general_frame_subframe_side_guide.grid(row=2, column=1,sticky="nsew", padx=20, pady=20) self.create_general_settings_widgets() self.apply_general_style_to_widgets(self.general_frame_subframe) self.override_general_style_widgets() self.training_frame_finetune = ctk.CTkFrame(self, width=400, corner_radius=0,fg_color='transparent') self.training_frame_finetune.grid_columnconfigure(0, weight=1) self.training_frame_finetune_subframe = ctk.CTkFrame(self.training_frame_finetune,width=400,height=1500, corner_radius=20) self.training_frame_finetune_subframe.grid_columnconfigure(0, weight=1) self.training_frame_finetune_subframe.grid_columnconfigure(1, weight=1) self.training_frame_finetune_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20) self.create_trainer_settings_widgets() self.grid_train_settings() self.apply_general_style_to_widgets(self.training_frame_finetune_subframe) self.override_training_style_widgets() self.dataset_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent') self.dataset_frame.grid_columnconfigure(0, weight=1) self.dataset_frame_subframe = ctk.CTkFrame(self.dataset_frame,width=400, corner_radius=20) self.dataset_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20) self.create_dataset_settings_widgets() self.apply_general_style_to_widgets(self.dataset_frame_subframe) self.sampling_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent') self.sampling_frame.grid_columnconfigure(0, weight=1) self.sampling_frame_subframe = ctk.CTkFrame(self.sampling_frame,width=400, corner_radius=20) self.sampling_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20) self.create_sampling_settings_widgets() self.apply_general_style_to_widgets(self.sampling_frame_subframe) self.data_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent') self.data_frame.grid_columnconfigure(0, weight=1) self.data_frame_subframe = ctk.CTkFrame(self.data_frame,width=400, corner_radius=20) self.data_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=5) self.create_data_settings_widgets() self.apply_general_style_to_widgets(self.data_frame_subframe) self.data_frame_concepts_subframe = ctk.CTkFrame(self.data_frame,width=400, corner_radius=20) self.data_frame_concepts_subframe.grid(row=3, column=0,sticky="nsew", padx=20, pady=5) self.playground_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent') self.playground_frame.grid_columnconfigure(0, weight=1) self.playground_frame_subframe = ctk.CTkFrame(self.playground_frame,width=400, corner_radius=20) self.playground_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20) self.playground_frame_subframe.grid_columnconfigure(0, weight=1) self.playground_frame_subframe.grid_columnconfigure(1, weight=3) self.playground_frame_subframe.grid_columnconfigure(2, weight=1) self.create_plyaground_widgets() self.apply_general_style_to_widgets(self.playground_frame_subframe) self.override_playground_widgets_style() self.toolbox_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent') self.toolbox_frame.grid_columnconfigure(0, weight=1) self.toolbox_frame_subframe = ctk.CTkFrame(self.toolbox_frame,width=400, corner_radius=20) self.toolbox_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20) self.create_toolbox_widgets() self.apply_general_style_to_widgets(self.toolbox_frame_subframe) self.select_frame_by_name('general') self.update() if os.path.exists("stabletune_last_run.json"): try: self.load_config(file_name="stabletune_last_run.json") #try loading the latest generated model to playground entry self.find_latest_generated_model(self.play_model_entry) #convert to ckpt if option is wanted if self.execute_post_conversion == True: #construct unique name epoch = self.play_model_entry.get().split(os.sep)[-1] name_of_model = self.play_model_entry.get().split(os.sep)[-2] res = self.resolution_var.get() #time and date #format time and date to %month%day%hour%minute now = datetime.now() dt_string = now.strftime("%m-%d-%H-%M") #construct name name = name_of_model+'_'+res+"_"+dt_string+"_"+epoch #print(self.play_model_entry.get()) #if self.play_model_entry.get() is a directory and all required folders exist if os.path.isdir(self.play_model_entry.get()) and all([os.path.exists(os.path.join(self.play_model_entry.get(), folder)) for folder in self.required_folders]): #print("all folders exist") self.convert_to_ckpt(model_path=self.play_model_entry.get(), output_path=self.output_path_entry.get(),name=name) #self.convert_to_ckpt(model_path=self.play_model_entry.get(), output_path=self.output_path_entry.get(),name=name) #open stabletune_last_run.json and change convert_to_ckpt_after_training to False with open("stabletune_last_run.json", "r") as f: data = json.load(f) data["execute_post_conversion"] = False with open("stabletune_last_run.json", "w") as f: json.dump(data, f, indent=4) except Exception as e: print(e) pass else: pass def create_default_variables(self): self.possible_resolutions = ["256", "320", "384", "448", "512", "576", "640", "704", "768", "832", "896", "960", "1024","1088", "1152", "1216", "1280", "1344", "1408", "1472", "1536", "1600", "1664", "1728", "1792", "1856", "1920", '1984', '2048'] self.play_current_image = None self.update_available = False self.shuffle_dataset_per_epoch = False self.batch_prompt_sampling_num_prompts = '0' self.save_safetensors = False self.attention = 'xformers' self.attention_types = ['xformers','Flash Attention'] self.model_variant = 'Regular' self.model_variants = ['Regular', 'Inpaint','Depth2Img'] self.masked_training = False self.normalize_masked_area_loss = True self.unmasked_probability = '0%' self.fallback_mask_prompt = '' self.max_denoising_strength = '100%' self.required_folders = ["vae", "unet", "tokenizer", "text_encoder"] self.aspect_ratio_bucketing_mode = 'Dynamic Fill' self.dynamic_bucketing_mode = 'Duplicate' self.play_keep_seed = False self.use_ema = False self.clip_penultimate = False self.conditional_dropout = '' self.cloud_toggle = False self.generation_window = None self.concept_widgets = [] self.sample_prompts = [] self.number_of_sample_prompts = len(self.sample_prompts) self.sample_prompt_labels = [] self.input_model_path = "stabilityai/stable-diffusion-2-1-base" self.vae_model_path = "" self.output_path = "models/new_model" self.send_telegram_updates = False self.telegram_token = "TOKEN" self.telegram_chat_id = "ID" self.seed_number = 3434554 self.resolution = 512 self.batch_size = 24 self.num_train_epochs = 100 self.accumulation_steps = 1 self.mixed_precision = "fp16" self.learning_rate = "3e-6" self.learning_rate_schedule = "constant" self.learning_rate_warmup_steps = 0 self.concept_list_json_path = "concept_list.json" self.save_and_sample_every_x_epochs = 5 self.train_text_encoder = True self.use_8bit_adam = True self.use_gradient_checkpointing = True self.num_class_images = 200 self.add_class_images_to_training = False self.sample_batch_size = 1 self.save_sample_controlled_seed = [] self.delete_checkpoints_when_full_drive = True self.use_image_names_as_captions = True self.shuffle_captions = False self.use_offset_noise = False self.offset_noise_weight = 0.1 self.use_gan = False self.gan_weight = 0.05 self.num_samples_to_generate = 1 self.auto_balance_concept_datasets = False self.sample_width = 512 self.sample_height = 512 #self.save_latents_cache = True self.regenerate_latents_cache = False self.use_aspect_ratio_bucketing = True self.do_not_use_latents_cache = True self.with_prior_reservation = False self.prior_loss_weight = 1.0 self.sample_random_aspect_ratio = False self.add_controlled_seed_to_sample = [] self.sample_on_training_start = True self.concept_template = {'instance_prompt': 'subject', 'class_prompt': 'a photo of class', 'instance_data_dir':'./data/subject','class_data_dir':'./data/subject_class'} self.concepts = [] self.play_input_model_path = "" self.play_postive_prompt = "" self.play_negative_prompt = "" self.play_seed = -1 self.play_num_samples = 1 self.play_sample_width = 512 self.play_sample_height = 512 self.play_cfg = 7.5 self.play_steps = 25 self.schedulers = ["DPMSolverMultistepScheduler", "PNDMScheduler", 'DDIMScheduler','EulerAncestralDiscreteScheduler','EulerDiscreteScheduler'] self.quick_select_models = ["Stable Diffusion 1.4", "Stable Diffusion 1.5", "Stable Diffusion 1.5 Inpaint", "Stable Diffusion 2 Base (512)", "Stable Diffusion 2 (768)", 'Stable Diffusion 2 Inpaint','Stable Diffusion 2 Depth2Img', 'Stable Diffusion 2.1 Base (512)', "Stable Diffusion 2.1 (768)"] self.play_scheduler = 'DPMSolverMultistepScheduler' self.pipe = None self.current_model = None self.play_save_image_button = None self.dataset_repeats = 1 self.limit_text_encoder = 0 self.use_text_files_as_captions = True self.ckpt_sd_version = None self.convert_to_ckpt_after_training = False self.execute_post_conversion = False self.preview_images = [] self.disable_cudnn_benchmark = True self.sample_step_interval = 500 self.use_lion = False def select_frame_by_name(self, name): # set button color for selected button self.sidebar_button_1.configure(fg_color=("gray75", "gray25") if name == "general" else "transparent") self.sidebar_button_2.configure(fg_color=("gray75", "gray25") if name == "training" else "transparent") self.sidebar_button_3.configure(fg_color=("gray75", "gray25") if name == "dataset" else "transparent") self.sidebar_button_4.configure(fg_color=("gray75", "gray25") if name == "sampling" else "transparent") self.sidebar_button_5.configure(fg_color=("gray75", "gray25") if name == "data" else "transparent") self.sidebar_button_6.configure(fg_color=("gray75", "gray25") if name == "playground" else "transparent") self.sidebar_button_7.configure(fg_color=("gray75", "gray25") if name == "toolbox" else "transparent") # show selected frame if name == "general": self.general_frame.grid(row=0, column=1, sticky="nsew") else: self.general_frame.grid_forget() if name == "training": self.training_frame_finetune.grid(row=0, column=1, sticky="nsew") else: self.training_frame_finetune.grid_forget() if name == "dataset": self.dataset_frame.grid(row=0, column=1, sticky="nsew") else: self.dataset_frame.grid_forget() if name == "sampling": self.sampling_frame.grid(row=0, column=1, sticky="nsew") else: self.sampling_frame.grid_forget() if name == "data": self.data_frame.grid(row=0, column=1, sticky="nsew") else: self.data_frame.grid_forget() if name == "playground": self.playground_frame.grid(row=0, column=1, sticky="nsew") else: self.playground_frame.grid_forget() if name == "toolbox": self.toolbox_frame.grid(row=0, column=1, sticky="nsew") else: self.toolbox_frame.grid_forget() def general_nav_button_event(self): self.select_frame_by_name("general") def training_nav_button_event(self): self.select_frame_by_name("training") def dataset_nav_button_event(self): self.select_frame_by_name("dataset") def sampling_nav_button_event(self): self.select_frame_by_name("sampling") def data_nav_button_event(self): self.select_frame_by_name("data") def playground_nav_button_event(self): self.select_frame_by_name("playground") def toolbox_nav_button_event(self): self.select_frame_by_name("toolbox") #create a right click menu for entry widgets def create_right_click_menu(self, event): #create a menu self.menu = Menu(self.master, tearoff=0) self.menu.config(font=("Segoe UI", 15)) #set dark colors for the menu self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff") #add commands to the menu self.menu.add_command(label="Cut", command=lambda: self.focus_get().event_generate("<>")) self.menu.add_command(label="Copy", command=lambda: self.focus_get().event_generate("<>")) self.menu.add_command(label="Paste", command=lambda: self.focus_get().event_generate("<>")) self.menu.add_command(label="Select All", command=lambda: self.focus_get().event_generate("<>")) #display the menu try: self.menu.tk_popup(event.x_root, event.y_root) finally: #make sure to release the grab (Tk 8.0a1 only) self.menu.grab_release() def create_right_click_menu_export(self, event): #create a menu self.menu = Menu(self.master, tearoff=0) #set menu size and font size self.menu.config(font=("Segoe UI", 15)) #set dark colors for the menu self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff") #add commands to the menu self.menu.add_command(label="Export Trainer Command for Windows", command=lambda: self.process_inputs(export='Win')) self.menu.add_command(label="Copy Trainer Command for Linux", command=lambda: self.process_inputs(export='LinuxCMD')) #display the menu try: self.menu.tk_popup(event.x_root, event.y_root) finally: #make sure to release the grab (Tk 8.0a1 only) self.menu.grab_release() def create_left_click_menu_config(self, event): #create a menu self.menu = Menu(self.master, tearoff=0) #set menu size and font size self.menu.config(font=("Segoe UI", 15)) #set dark colors for the menu self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff") #add commands to the menu self.menu.add_command(label="Load Config", command=self.load_config) self.menu.add_command(label="Save Config", command=self.save_config) #display the menu try: self.menu.tk_popup(event.x_root, event.y_root) finally: #make sure to release the grab (Tk 8.0a1 only) self.menu.grab_release() def quick_select_model(self,*args): val = self.quick_select_var.get() if val != "Click to select model": #clear input_model_path_entry self.input_model_path_entry.delete(0, tk.END) if val == 'Stable Diffusion 1.4': self.input_model_path_entry.insert(0,"CompVis/stable-diffusion-v1-4") self.model_variant_var.set("Regular") elif val == 'Stable Diffusion 1.5': self.input_model_path_entry.insert(0,"runwayml/stable-diffusion-v1-5") self.model_variant_var.set("Regular") elif val == 'Stable Diffusion 1.5 Inpaint': self.input_model_path_entry.insert(0,"runwayml/stable-diffusion-inpainting") self.model_variant_var.set("Inpaint") elif val == 'Stable Diffusion 2 Base (512)': self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-base") self.model_variant_var.set("Regular") elif val == 'Stable Diffusion 2 (768)': self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2") self.resolution_var.set("768") self.sample_height_entry.delete(0, tk.END) self.sample_height_entry.insert(0,"768") self.sample_width_entry.delete(0, tk.END) self.sample_width_entry.insert(0,"768") self.model_variant_var.set("Regular") elif val == 'Stable Diffusion 2 Inpaint': self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-inpainting") self.model_variant_var.set("Inpaint") elif val == 'Stable Diffusion 2 Depth2Img': self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-depth") self.model_variant_var.set("Depth2Img") elif val == 'Stable Diffusion 2.1 Base (512)': self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-1-base") self.model_variant_var.set("Regular") elif val == 'Stable Diffusion 2.1 (768)': self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-1") self.resolution_var.set("768") self.sample_height_entry.delete(0, tk.END) self.sample_height_entry.insert(0,"768") self.sample_width_entry.delete(0, tk.END) self.sample_width_entry.insert(0,"768") self.model_variant_var.set("Regular") def override_training_style_widgets(self): for i in self.training_frame_finetune_subframe.children.values(): if 'ctkbutton' in str(i): i.grid(padx=5, pady=5,sticky="w") if 'ctkoptionmenu' in str(i): i.grid(padx=10, pady=5,sticky="w") if 'ctkentry' in str(i): i.configure(width=160) i.grid(padx=10, pady=5,sticky="w") i.bind("", self.create_right_click_menu) if 'ctkswitch' in str(i): i.configure(text='') i.grid(padx=10, pady=5,sticky="") if 'ctklabel' in str(i): i.grid(padx=10, pady=5,sticky="w") def override_playground_widgets_style(self): self.playground_title.grid(row=0, column=0, padx=20, pady=20) self.play_model_label.grid(row=0, column=0, sticky="nsew") self.play_model_entry.grid(row=0, column=1, sticky="nsew") self.play_prompt_label.grid(row=1, column=0, sticky="nsew") self.play_prompt_entry.grid(row=1, column=1,columnspan=2, sticky="nsew") self.play_negative_prompt_label.grid(row=2, column=0, sticky="nsew") self.play_negative_prompt_entry.grid(row=2, column=1,columnspan=2, sticky="nsew") self.play_seed_label.grid(row=3, column=0, sticky="nsew") self.play_seed_entry.grid(row=3, column=1, sticky="w") self.play_keep_seed_checkbox.grid(row=3, column=1) self.play_steps_label.grid(row=4, column=0, sticky="nsew") self.play_steps_slider.grid(row=4, column=1, sticky="nsew") self.play_scheduler_label.grid(row=5, column=0, sticky="nsew") self.play_scheduler_option_menu.grid(row=5, column=1, sticky="nsew") self.play_resolution_label.grid(row=6,rowspan=2, column=0, sticky="nsew") self.play_resolution_label_height.grid(row=6, column=1, sticky="w") self.play_resolution_label_width.grid(row=6, column=1, sticky="e") self.play_resolution_slider_height.grid(row=7, column=1, sticky="w") self.play_resolution_slider_width.grid(row=7, column=1, sticky="e") self.play_resolution_slider_height.set(self.play_sample_height) self.play_cfg_label.grid(row=8, column=0, sticky="nsew") self.play_cfg_slider.grid(row=8, column=1, sticky="nsew") self.play_toolbox_label.grid(row=9, column=0, sticky="nsew") self.play_generate_image_button.grid(row=10, column=0, columnspan=2, sticky="nsew") self.play_convert_to_ckpt_button.grid(row=9, column=1, columnspan=1, sticky="w") def override_general_style_widgets(self): pass def apply_general_style_to_widgets(self,frame): for i in frame.children.values(): if 'ctkbutton' in str(i): i.grid(padx=5, pady=10,sticky="w") if 'ctkoptionmenu' in str(i): i.grid(padx=10, pady=10,sticky="w") if 'ctkentry' in str(i): i.configure(width=160) i.grid(padx=10, pady=5,sticky="w") i.bind("", self.create_right_click_menu) if 'ctkswitch' in str(i): i.configure(text='') i.grid(padx=10, pady=10,sticky="") if 'ctklabel' in str(i): i.grid(padx=10,sticky="w") def grid_train_settings(self): #define grid row and column self.training_frame_finetune_subframe.grid_columnconfigure(0, weight=2) self.training_frame_finetune_subframe.grid_columnconfigure(1, weight=1) self.training_frame_finetune_subframe.grid_columnconfigure(2, weight=2) self.training_frame_finetune_subframe.grid_columnconfigure(3, weight=1) rows = 14 columns = 4 widgets = self.training_frame_finetune_subframe.children.values() #organize widgets in grid curRow = 0 curColumn = 0 #make widgets a list widgets = list(widgets)[1:] #find ctkcanvas in widgets and remove it for i in widgets: if 'ctkcanvas' in str(i): widgets.remove(i) #create pairs of widgets pairs = [] for i in range(0,len(widgets),2): pairs.append([widgets[i],widgets[i+1]]) for p in pairs: p[0].grid(row=curRow, column=curColumn, sticky="w",padx=1,pady=1) p[1].grid(row=curRow, column=curColumn+1, sticky="w",padx=1,pady=1) curRow += 1 if curRow == rows: curRow = 0 curColumn += 2 def dreambooth_mode(self): try: if self.dreambooth_mode_selected: self.dreambooth_mode_selected.destroy() except: pass try: if self.fine_tune_mode_selected: self.fine_tune_mode_selected.destroy() #re-enable previous disabled widgets self.with_prior_loss_preservation_checkbox.configure(state='normal') self.with_prior_loss_preservation_label.configure(state='normal') self.prior_loss_preservation_weight_entry.configure(state='normal') self.prior_loss_preservation_weight_label.configure(state='normal') self.with_prior_loss_preservation_var.set(1) except: pass self.dreambooth_mode_selected = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Dreambooth it is!\n I disabled irrelevant features for you.", font=ctk.CTkFont(size=14)) self.dreambooth_mode_selected.pack(side="top", fill="x", expand=False, padx=10, pady=10) self.use_text_files_as_captions_checkbox.configure(state='disabled') self.use_text_files_as_captions_label.configure(state='disabled') self.use_text_files_as_captions_var.set(0) #self.use_text_files_as_captions_checkbox.set(0) self.use_image_names_as_captions_label.configure(state='disabled') self.use_image_names_as_captions_checkbox.configure(state='disabled') self.use_image_names_as_captions_var.set(0) #self.use_image_names_as_captions_checkbox.set(0) self.shuffle_captions_label.configure(state='disabled') self.shuffle_captions_checkbox.configure(state='disabled') self.shuffle_captions_var.set(0) #self.shuffle_captions_checkbox.set(0) self.add_class_images_to_dataset_checkbox.configure(state='disabled') self.add_class_images_to_dataset_label.configure(state='disabled') self.add_class_images_to_dataset_var.set(0) #self.add_class_images_to_dataset_checkbox.set(0) pass def fine_tune_mode(self): try: if self.dreambooth_mode_selected: self.dreambooth_mode_selected.destroy() #re-enable checkboxes self.use_text_files_as_captions_checkbox.configure(state='normal') self.use_text_files_as_captions_label.configure(state='normal') self.use_image_names_as_captions_label.configure(state='normal') self.use_image_names_as_captions_checkbox.configure(state='normal') self.shuffle_captions_label.configure(state='normal') self.shuffle_captions_checkbox.configure(state='normal') self.add_class_images_to_dataset_checkbox.configure(state='normal') self.add_class_images_to_dataset_label.configure(state='normal') self.use_text_files_as_captions_var.set(1) self.use_image_names_as_captions_var.set(1) self.shuffle_captions_var.set(0) self.add_class_images_to_dataset_var.set(0) except: pass try: if self.fine_tune_mode_selected: self.fine_tune_mode_selected.destroy() except: pass self.fine_tune_mode_selected = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Let's Fine-Tune!\n I disabled irrelevant features for you.", font=ctk.CTkFont(size=14)) self.fine_tune_mode_selected.pack(side="top", fill="x", expand=False, padx=10, pady=10) self.with_prior_loss_preservation_checkbox.configure(state='disabled') self.with_prior_loss_preservation_label.configure(state='disabled') #self.with_prior_loss_preservation_checkbox.set(0) self.prior_loss_preservation_weight_label.configure(state='disabled') self.prior_loss_preservation_weight_entry.configure(state='disabled') self.with_prior_loss_preservation_var.set(0) #self.prior_loss_preservation_weight_entry.set(1.0) pass ''' def lora_mode(self): self.lora_mode_selected = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Lora it is!\n I disabled irrelevant features for you.", font=ctk.CTkFont(size=14)) self.lora_mode_selected.pack(side="top", fill="x", expand=False, padx=10, pady=10) pass ''' def create_general_settings_widgets(self): self.general_frame_title = ctk.CTkLabel(self.general_frame, text="General Settings", font=ctk.CTkFont(size=20, weight="bold")) self.general_frame_title.grid(row=0, column=0,columnspan=2, padx=20, pady=20) #self.tip_label = ctk.CTkLabel(self.general_frame, text="Tip: Hover over settings for information", font=ctk.CTkFont(size=14)) #self.tip_label.grid(row=1, column=0, sticky="nsew") self.general_frame_sidebar_title = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Welcome!", font=ctk.CTkFont(size=20, weight="bold")) #self.general_frame_sidebar_title.grid(row=0, column=0, sticky="nsew") self.general_frame_sidebar_title.pack(side="top", fill="x", expand=False, padx=10, pady=10) #text self.general_frame_sidebar_text = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Welcome To StableTuner\nHow do you want to train today?", font=ctk.CTkFont(size=14)) self.general_frame_sidebar_text.pack(side="top", fill="x", expand=False, padx=10, pady=10) #add dreambooth button self.dreambooth_button = ctk.CTkButton(self.general_frame_subframe_side_guide, text="Dreambooth", command=self.dreambooth_mode) self.dreambooth_button.pack(side="top", fill="x", expand=False, padx=10, pady=10) #add fine-tune button self.fine_tune_button = ctk.CTkButton(self.general_frame_subframe_side_guide, text="Fine-Tune", command=self.fine_tune_mode) self.fine_tune_button.pack(side="top", fill="x", expand=False, padx=10, pady=10) #add LORA button with disabled state #self.lora_button = ctk.CTkButton(self.general_frame_subframe_side_guide, text="LORA", command=self.lora_mode, state="disabled") #self.lora_button.pack(side="top", fill="x", expand=False, padx=10, pady=10) self.quick_select_var = tk.StringVar(self.master) self.quick_select_var.set('Quick Select Base Model') self.quick_select_dropdown = ctk.CTkOptionMenu(self.general_frame_subframe, variable=self.quick_select_var, values=self.quick_select_models, command=self.quick_select_model,dynamic_resizing=False, width=200) self.quick_select_dropdown.grid(row=0, column=0, sticky="nsew") self.load_config_button = ctk.CTkButton(self.general_frame_subframe, text="Load/Save Config") #bind the load config button to a function self.load_config_button.bind("", lambda event: self.create_left_click_menu_config(event)) self.load_config_button.grid(row=0, column=1, sticky="nsew") #create another button to resume from latest checkpoint self.input_model_path_resume_button = ctk.CTkButton(self.general_frame_subframe, text="Resume From Last Session",width=50, command=lambda : self.find_latest_generated_model(self.input_model_path_entry)) self.input_model_path_resume_button.grid(row=0, column=2, sticky="nsew") self.input_model_path_label = ctk.CTkLabel(self.general_frame_subframe, text="Input Model / HuggingFace Repo") input_model_path_label_ttp = CreateToolTip(self.input_model_path_label, "The path to the diffusers model to use. Can be a local path or a HuggingFace repo path.") self.input_model_path_label.grid(row=1, column=0, sticky="nsew") self.input_model_path_entry = ctk.CTkEntry(self.general_frame_subframe,width=30) self.input_model_path_entry.grid(row=1, column=1, sticky="nsew") self.input_model_path_entry.insert(0, self.input_model_path) #make a button to open a file dialog self.input_model_path_button = ctk.CTkButton(self.general_frame_subframe,width=30, text="...", command=self.choose_model) self.input_model_path_button.grid(row=1, column=2, sticky="w") self.vae_model_path_label = ctk.CTkLabel(self.general_frame_subframe, text="VAE model path / HuggingFace Repo") vae_model_path_label_ttp = CreateToolTip(self.vae_model_path_label, "OPTINAL The path to the VAE model to use. Can be a local path or a HuggingFace repo path.") self.vae_model_path_label.grid(row=2, column=0, sticky="nsew") self.vae_model_path_entry = ctk.CTkEntry(self.general_frame_subframe) self.vae_model_path_entry.grid(row=2, column=1, sticky="nsew") self.vae_model_path_entry.insert(0, self.vae_model_path) #make a button to open a file dialog self.vae_model_path_button = ctk.CTkButton(self.general_frame_subframe,width=30, text="...", command=lambda: self.open_file_dialog(self.vae_model_path_entry)) self.vae_model_path_button.grid(row=2, column=2, sticky="w") self.output_path_label = ctk.CTkLabel(self.general_frame_subframe, text="Output Path") output_path_label_ttp = CreateToolTip(self.output_path_label, "The path to the output directory. If it doesn't exist, it will be created.") self.output_path_label.grid(row=3, column=0, sticky="nsew") self.output_path_entry = ctk.CTkEntry(self.general_frame_subframe) self.output_path_entry.grid(row=3, column=1, sticky="nsew") self.output_path_entry.insert(0, self.output_path) #make a button to open a file dialog self.output_path_button = ctk.CTkButton(self.general_frame_subframe,width=30, text="...", command=lambda: self.open_file_dialog(self.output_path_entry)) self.output_path_button.grid(row=3, column=2, sticky="w") self.convert_to_ckpt_after_training_label = ctk.CTkLabel(self.general_frame_subframe, text="Convert to CKPT after training?") convert_to_ckpt_label_ttp = CreateToolTip(self.convert_to_ckpt_after_training_label, "Convert the model to a tensorflow checkpoint after training.") self.convert_to_ckpt_after_training_label.grid(row=4, column=0, sticky="nsew") self.convert_to_ckpt_after_training_var = tk.IntVar() self.convert_to_ckpt_after_training_checkbox = ctk.CTkSwitch(self.general_frame_subframe,text='',variable=self.convert_to_ckpt_after_training_var) self.convert_to_ckpt_after_training_checkbox.grid(row=4, column=1, sticky="nsew",padx=10) #use telegram updates dark mode self.send_telegram_updates_label = ctk.CTkLabel(self.general_frame_subframe, text="Send Telegram Updates") send_telegram_updates_label_ttp = CreateToolTip(self.send_telegram_updates_label, "Use Telegram updates to monitor training progress, must have a Telegram bot set up.") self.send_telegram_updates_label.grid(row=6, column=0, sticky="nsew") #create checkbox to toggle telegram updates and show telegram token and chat id self.send_telegram_updates_var = tk.IntVar() self.send_telegram_updates_checkbox = ctk.CTkSwitch(self.general_frame_subframe,variable=self.send_telegram_updates_var, command=self.toggle_telegram_settings) self.send_telegram_updates_checkbox.grid(row=6, column=1, sticky="nsew") #create telegram token dark mode self.telegram_token_label = ctk.CTkLabel(self.general_frame_subframe, text="Telegram Token", state="disabled") telegram_token_label_ttp = CreateToolTip(self.telegram_token_label, "The Telegram token for your bot.") self.telegram_token_label.grid(row=7, column=0, sticky="nsew") self.telegram_token_entry = ctk.CTkEntry(self.general_frame_subframe, state="disabled") self.telegram_token_entry.grid(row=7, column=1,columnspan=3, sticky="nsew") self.telegram_token_entry.insert(0, self.telegram_token) #create telegram chat id dark mode self.telegram_chat_id_label = ctk.CTkLabel(self.general_frame_subframe, text="Telegram Chat ID", state="disabled") telegram_chat_id_label_ttp = CreateToolTip(self.telegram_chat_id_label, "The Telegram chat ID to send updates to.") self.telegram_chat_id_label.grid(row=8, column=0, sticky="nsew") self.telegram_chat_id_entry = ctk.CTkEntry(self.general_frame_subframe, state="disabled") self.telegram_chat_id_entry.grid(row=8, column=1,columnspan=3, sticky="nsew") self.telegram_chat_id_entry.insert(0, self.telegram_chat_id) #add a switch to toggle runpod mode self.cloud_mode_label = ctk.CTkLabel(self.general_frame_subframe, text="Cloud Training Export") cloud_mode_label_ttp = CreateToolTip(self.cloud_mode_label, "Cloud mode will package up a quick trainer session for RunPod/Colab etc.") self.cloud_mode_label.grid(row=9, column=0, sticky="nsew") self.cloud_mode_var = tk.IntVar() self.cloud_mode_checkbox = ctk.CTkSwitch(self.general_frame_subframe,variable=self.cloud_mode_var, command=self.toggle_runpod_mode) self.cloud_mode_checkbox.grid(row=9, column=1, sticky="nsew") def toggle_runpod_mode(self): toggle = self.cloud_mode_var.get() #flip self.toggle if toggle == True: toggle = False self.sidebar_button_12.configure(text='Export for Cloud!') else: toggle = True self.sidebar_button_12.configure(text='Start Training!') def create_trainer_settings_widgets(self): self.training_frame_finetune_title = ctk.CTkLabel(self.training_frame_finetune, text="Training Settings", font=ctk.CTkFont(size=20, weight="bold")) self.training_frame_finetune_title.grid(row=0, column=0, padx=20, pady=20) #add a model variant dropdown self.model_variant_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Model Variant") model_variant_label_ttp = CreateToolTip(self.model_variant_label, "The model type you're training.") self.model_variant_label.grid(row=0, column=0, sticky="nsew") self.model_variant_var = tk.StringVar() self.model_variant_var.set(self.model_variant) self.model_variant_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, values=self.model_variants, variable=self.model_variant_var) #add attention optionMenu self.attention_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Attention") attention_label_ttp = CreateToolTip(self.attention_label, "The attention type to use. Flash Attention may enable lower VRAM training but Xformers will be faster and better for bigger batch sizes.") self.attention_label.grid(row=1, column=0, sticky="nsew") self.attention_var = tk.StringVar() self.attention_var.set(self.attention) self.attention_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, values=self.attention_types, variable=self.attention_var) #add a batch size entry #add a seed entry self.seed_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Seed") seed_label_ttp = CreateToolTip(self.seed_label, "The seed to use for training.") #self.seed_label.grid(row=1, column=0, sticky="nsew") self.seed_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) #self.seed_entry.grid(row=1, column=1, sticky="nsew") self.seed_entry.insert(0, self.seed_number) #create resolution dark mode dropdown self.resolution_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Resolution") resolution_label_ttp = CreateToolTip(self.resolution_label, "The resolution of the images to train on.") #self.resolution_label.grid(row=2, column=0, sticky="nsew") self.resolution_var = tk.StringVar() self.resolution_var.set(self.resolution) self.resolution_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.resolution_var, values=self.possible_resolutions) #self.resolution_dropdown.grid(row=2, column=1, sticky="nsew") #create train batch size dark mode dropdown with values from 1 to 60 self.train_batch_size_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Train Batch Size") train_batch_size_label_ttp = CreateToolTip(self.train_batch_size_label, "The batch size to use for training.") #self.train_batch_size_label.grid(row=3, column=0, sticky="nsew") self.train_batch_size_var = tk.StringVar() self.train_batch_size_var.set(self.batch_size) #make a list of values from 1 to 60 that are strings #train_batch_size_values = self.train_batch_size_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.train_batch_size_var, values=[str(i) for i in range(1,61)]) #self.train_batch_size_dropdown.grid(row=3, column=1, sticky="nsew") #create train epochs dark mode self.train_epochs_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Train Epochs") train_epochs_label_ttp = CreateToolTip(self.train_epochs_label, "The number of epochs to train for. An epoch is one pass through the entire dataset.") #self.train_epochs_label.grid(row=4, column=0, sticky="nsew") self.train_epochs_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) #self.train_epochs_entry.grid(row=4, column=1, sticky="nsew") self.train_epochs_entry.insert(0, self.num_train_epochs) #create mixed precision dark mode dropdown self.mixed_precision_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Mixed Precision") mixed_precision_label_ttp = CreateToolTip(self.mixed_precision_label, "Use mixed precision training to speed up training, FP16 is recommended but requires a GPU with Tensor Cores. TF32 is recommended for RTX 30 series GPUs and newer.") #self.mixed_precision_label.grid(row=5, column=0, sticky="nsew") self.mixed_precision_var = tk.StringVar() self.mixed_precision_var.set(self.mixed_precision) self.mixed_precision_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.mixed_precision_var,values=["bf16","fp16","fp32","tf32"]) #self.mixed_precision_dropdown.grid(row=5, column=1, sticky="nsew") #create use 8bit adam checkbox self.use_8bit_adam_var = tk.IntVar() self.use_8bit_adam_var.set(self.use_8bit_adam) #create label self.use_8bit_adam_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use 8bit Adam") use_8bit_adam_label_ttp = CreateToolTip(self.use_8bit_adam_label, "Use 8bit Adam to speed up training, requires bytsandbytes.") #self.use_8bit_adam_label.grid(row=6, column=0, sticky="nsew") #create checkbox self.use_8bit_adam_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_8bit_adam_var,text='') #create use LION optimizer checkbox self.use_lion_var = tk.IntVar() self.use_lion_var.set(self.use_lion) #create label self.use_lion_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use LION") use_lion_label_ttp = CreateToolTip(self.use_lion_label, "Use LION optimizer to speed up training, requires triton.") #self.use_lion_label.grid(row=7, column=0, sticky="nsew") #create checkbox self.use_lion_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_lion_var,text='Use LION Optimizer') #self.use_8bit_adam_checkbox.grid(row=6, column=1, sticky="nsew") #create use gradient checkpointing checkbox self.use_gradient_checkpointing_var = tk.IntVar() self.use_gradient_checkpointing_var.set(self.use_gradient_checkpointing) #create label self.use_gradient_checkpointing_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use Gradient Checkpointing") use_gradient_checkpointing_label_ttp = CreateToolTip(self.use_gradient_checkpointing_label, "Use gradient checkpointing to reduce RAM usage.") #self.use_gradient_checkpointing_label.grid(row=7, column=0, sticky="nsew") #create checkbox self.use_gradient_checkpointing_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_gradient_checkpointing_var) #self.use_gradient_checkpointing_checkbox.grid(row=7, column=1, sticky="nsew") #create gradient accumulation steps dark mode dropdown with values from 1 to 60 self.gradient_accumulation_steps_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Gradient Accumulation Steps") gradient_accumulation_steps_label_ttp = CreateToolTip(self.gradient_accumulation_steps_label, "The number of gradient accumulation steps to use, this is useful for training with limited GPU memory.") #self.gradient_accumulation_steps_label.grid(row=8, column=0, sticky="nsew") self.gradient_accumulation_steps_var = tk.StringVar() self.gradient_accumulation_steps_var.set(self.accumulation_steps) self.gradient_accumulation_steps_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.gradient_accumulation_steps_var, values=['1','2','3','4','5','6','7','8','9','10']) #self.gradient_accumulation_steps_dropdown.grid(row=8, column=1, sticky="nsew") #create learning rate dark mode entry self.learning_rate_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Learning Rate") learning_rate_label_ttp = CreateToolTip(self.learning_rate_label, "The learning rate to use for training.") #self.learning_rate_label.grid(row=9, column=0, sticky="nsew") self.learning_rate_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) #self.learning_rate_entry.grid(row=9, column=1, sticky="nsew") self.learning_rate_entry.insert(0, self.learning_rate) #create learning rate scheduler dropdown self.learning_rate_scheduler_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Learning Rate Scheduler") learning_rate_scheduler_label_ttp = CreateToolTip(self.learning_rate_scheduler_label, "The learning rate scheduler to use for training.") #self.learning_rate_scheduler_label.grid(row=10, column=0, sticky="nsew") self.learning_rate_scheduler_var = tk.StringVar() self.learning_rate_scheduler_var.set(self.learning_rate_schedule) self.learning_rate_scheduler_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.learning_rate_scheduler_var, values=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]) #self.learning_rate_scheduler_dropdown.grid(row=10, column=1, sticky="nsew") #create num warmup steps dark mode entry self.num_warmup_steps_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="LR Warmup Steps") num_warmup_steps_label_ttp = CreateToolTip(self.num_warmup_steps_label, "The number of warmup steps to use for the learning rate scheduler.") #self.num_warmup_steps_label.grid(row=11, column=0, sticky="nsew") self.num_warmup_steps_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) #self.num_warmup_steps_entry.grid(row=11, column=1, sticky="nsew") self.num_warmup_steps_entry.insert(0, self.learning_rate_warmup_steps) #create use latent cache checkbox #self.use_latent_cache_var = tk.IntVar() #self.use_latent_cache_var.set(self.do_not_use_latents_cache) #create label #self.use_latent_cache_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use Latent Cache") #use_latent_cache_label_ttp = CreateToolTip(self.use_latent_cache_label, "Cache the latents to speed up training.") #self.use_latent_cache_label.grid(row=12, column=0, sticky="nsew") #create checkbox #self.use_latent_cache_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_latent_cache_var) #self.use_latent_cache_checkbox.grid(row=12, column=1, sticky="nsew") #create save latent cache checkbox #self.save_latent_cache_var = tk.IntVar() #self.save_latent_cache_var.set(self.save_latents_cache) #create label #self.save_latent_cache_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Save Latent Cache") #save_latent_cache_label_ttp = CreateToolTip(self.save_latent_cache_label, "Save the latents cache to disk after generation, will be remade if batch size changes.") #self.save_latent_cache_label.grid(row=13, column=0, sticky="nsew") #create checkbox #self.save_latent_cache_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.save_latent_cache_var) #self.save_latent_cache_checkbox.grid(row=13, column=1, sticky="nsew") #create regnerate latent cache checkbox self.regenerate_latent_cache_var = tk.IntVar() self.regenerate_latent_cache_var.set(self.regenerate_latents_cache) #create label self.regenerate_latent_cache_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Regenerate Latent Cache") regenerate_latent_cache_label_ttp = CreateToolTip(self.regenerate_latent_cache_label, "Force the latents cache to be regenerated.") #self.regenerate_latent_cache_label.grid(row=14, column=0, sticky="nsew") #create checkbox self.regenerate_latent_cache_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.regenerate_latent_cache_var) #self.regenerate_latent_cache_checkbox.grid(row=14, column=1, sticky="nsew") #create train text encoder checkbox self.train_text_encoder_var = tk.IntVar() self.train_text_encoder_var.set(self.train_text_encoder) #create label self.train_text_encoder_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Train Text Encoder") train_text_encoder_label_ttp = CreateToolTip(self.train_text_encoder_label, "Train the text encoder along with the UNET.") #self.train_text_encoder_label.grid(row=15, column=0, sticky="nsew") #create checkbox self.train_text_encoder_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.train_text_encoder_var) #self.train_text_encoder_checkbox.grid(row=15, column=1, sticky="nsew") #create limit text encoder encoder entry self.clip_penultimate_var = tk.IntVar() self.clip_penultimate_var.set(self.clip_penultimate) #create label self.clip_penultimate_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Clip Penultimate") clip_penultimate_label_ttp = CreateToolTip(self.clip_penultimate_label, "Train using the Penultimate layer of the text encoder.") #create checkbox self.clip_penultimate_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.clip_penultimate_var) self.limit_text_encoder_var = tk.StringVar() self.limit_text_encoder_var.set(self.limit_text_encoder) #create label self.limit_text_encoder_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Limit Text Encoder") limit_text_encoder_label_ttp = CreateToolTip(self.limit_text_encoder_label, "Stop training the text encoder after this many epochs, use % to train for a percentage of the total epochs.") #self.limit_text_encoder_label.grid(row=16, column=0, sticky="nsew") #create entry self.limit_text_encoder_entry = ctk.CTkEntry(self.training_frame_finetune_subframe, textvariable=self.limit_text_encoder_var) #self.limit_text_encoder_entry.grid(row=16, column=1, sticky="nsew") #create checkbox disable cudnn benchmark self.disable_cudnn_benchmark_var = tk.IntVar() self.disable_cudnn_benchmark_var.set(self.disable_cudnn_benchmark) #create label for checkbox self.disable_cudnn_benchmark_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="EXPERIMENTAL: Disable cuDNN Benchmark") disable_cudnn_benchmark_label_ttp = CreateToolTip(self.disable_cudnn_benchmark_label, "Disable cuDNN benchmarking, may offer 2x performance on some systems and stop OOM errors.") #self.disable_cudnn_benchmark_label.grid(row=17, column=0, sticky="nsew") #create checkbox self.disable_cudnn_benchmark_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.disable_cudnn_benchmark_var) #self.disable_cudnn_benchmark_checkbox.grid(row=17, column=1, sticky="nsew") #add conditional dropout entry self.conditional_dropout_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Conditional Dropout") conditional_dropout_label_ttp = CreateToolTip(self.conditional_dropout_label, "Precentage of probability to drop out a caption token to train the model to be more robust to missing words.") self.conditional_dropout_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) self.conditional_dropout_entry.insert(0, self.conditional_dropout) #create use EMA switch self.use_ema_var = tk.IntVar() self.use_ema_var.set(self.use_ema) #create label self.use_ema_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use EMA") use_ema_label_ttp = CreateToolTip(self.use_ema_label, "Use Exponential Moving Average to smooth the training paramaters. Will increase VRAM usage.") #self.use_ema_label.grid(row=18, column=0, sticky="nsew") #create checkbox self.use_ema_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_ema_var) #create with prior loss preservation checkbox self.with_prior_loss_preservation_var = tk.IntVar() self.with_prior_loss_preservation_var.set(self.with_prior_reservation) #create label self.with_prior_loss_preservation_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="With Prior Loss Preservation") with_prior_loss_preservation_label_ttp = CreateToolTip(self.with_prior_loss_preservation_label, "Use the prior loss preservation method. part of Dreambooth.") self.with_prior_loss_preservation_label.grid(row=19, column=0, sticky="nsew") #create checkbox self.with_prior_loss_preservation_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.with_prior_loss_preservation_var) self.with_prior_loss_preservation_checkbox.grid(row=19, column=1, sticky="nsew") #create prior loss preservation weight entry self.prior_loss_preservation_weight_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Weight") prior_loss_preservation_weight_label_ttp = CreateToolTip(self.prior_loss_preservation_weight_label, "The weight of the prior loss preservation loss.") self.prior_loss_preservation_weight_label.grid(row=19, column=1, sticky="e") self.prior_loss_preservation_weight_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) self.prior_loss_preservation_weight_entry.grid(row=19, column=3, sticky="w") self.prior_loss_preservation_weight_entry.insert(0, self.prior_loss_weight) #create contrasting light and color checkbox self.use_offset_noise_var = tk.IntVar() self.use_offset_noise_var.set(self.use_offset_noise) #create label self.offset_noise_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="With Offset Noise") offset_noise_label_ttp = CreateToolTip(self.offset_noise_label, "Apply offset noise to latents to learn image contrast.") self.offset_noise_label.grid(row=20, column=0, sticky="nsew") #create checkbox self.offset_noise_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_offset_noise_var) self.offset_noise_checkbox.grid(row=20, column=1, sticky="nsew") #create prior loss preservation weight entry self.offset_noise_weight_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Offset Noise Weight") offset_noise_weight_label_ttp = CreateToolTip(self.offset_noise_weight_label, "The weight of the offset noise.") self.offset_noise_weight_label.grid(row=20, column=1, sticky="e") self.offset_noise_weight_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) self.offset_noise_weight_entry.grid(row=20, column=3, sticky="w") self.offset_noise_weight_entry.insert(0, self.offset_noise_weight) # GAN training self.use_gan_var = tk.IntVar() self.use_gan_var.set(self.use_gan) #create label self.gan_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="With GAN") gan_label_ttp = CreateToolTip(self.gan_label, "Use GAN (experimental).") #create checkbox self.gan_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_gan_var) self.gan_checkbox.grid(row=21, column=1, sticky="nsew") #create GAN weight entry self.gan_weight_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="GAN Weight") gan_weight_label_ttp = CreateToolTip(self.gan_weight_label, "The weight of the GAN.") self.gan_weight_label.grid(row=21, column=1, sticky="e") self.gan_weight_entry = ctk.CTkEntry(self.training_frame_finetune_subframe) self.gan_weight_entry.grid(row=21, column=3, sticky="w") self.gan_weight_entry.insert(0, self.gan_weight) def create_dataset_settings_widgets(self): #self.dataset_settings_label = ctk.CTkLabel(self.dataset_tab, text="Dataset Settings", font=("Arial", 12, "bold")) #self.dataset_settings_label.grid(row=0, column=0, sticky="nsew") self.dataset_frame_title = ctk.CTkLabel(self.dataset_frame, text="Dataset Settings", font=ctk.CTkFont(size=20, weight="bold")) self.dataset_frame_title.grid(row=0, column=0, padx=20, pady=20, sticky="nsew") #create use text files as captions checkbox self.use_text_files_as_captions_var = tk.IntVar() self.use_text_files_as_captions_var.set(self.use_text_files_as_captions) #create label self.use_text_files_as_captions_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Use Text Files as Captions") use_text_files_as_captions_label_ttp = CreateToolTip(self.use_text_files_as_captions_label, "Use the text files as captions for training, text files must have same name as image, instance prompt/token will be ignored.") self.use_text_files_as_captions_label.grid(row=1, column=0, sticky="nsew") #create checkbox self.use_text_files_as_captions_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.use_text_files_as_captions_var) self.use_text_files_as_captions_checkbox.grid(row=1, column=1, sticky="nsew") # create use image names as captions checkbox self.use_image_names_as_captions_var = tk.IntVar() self.use_image_names_as_captions_var.set(self.use_image_names_as_captions) # create label self.use_image_names_as_captions_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Use Image Names as Captions") use_image_names_as_captions_label_ttp = CreateToolTip(self.use_image_names_as_captions_label, "Use the image names as captions for training, instance prompt/token will be ignored.") self.use_image_names_as_captions_label.grid(row=2, column=0, sticky="nsew") # create checkbox self.use_image_names_as_captions_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.use_image_names_as_captions_var) self.use_image_names_as_captions_checkbox.grid(row=2, column=1, sticky="nsew") # create shuffle captions checkbox self.shuffle_captions_var = tk.IntVar() self.shuffle_captions_var.set(self.shuffle_captions) # create label self.shuffle_captions_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Shuffle Captions") shuffle_captions_label_ttp = CreateToolTip(self.shuffle_captions_label, "Randomize the order of tags in a caption. Tags are separated by ','. Used for training with booru-style captions.") self.shuffle_captions_label.grid(row=3, column=0, sticky="nsew") # create checkbox self.shuffle_captions_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.shuffle_captions_var) self.shuffle_captions_checkbox.grid(row=3, column=1, sticky="nsew") # create auto balance dataset checkbox self.auto_balance_dataset_var = tk.IntVar() self.auto_balance_dataset_var.set(self.auto_balance_concept_datasets) # create label self.auto_balance_dataset_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Auto Balance Dataset") auto_balance_dataset_label_ttp = CreateToolTip(self.auto_balance_dataset_label, "Will use the concept with the least amount of images to balance the dataset by removing images from the other concepts.") self.auto_balance_dataset_label.grid(row=4, column=0, sticky="nsew") # create checkbox self.auto_balance_dataset_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.auto_balance_dataset_var) self.auto_balance_dataset_checkbox.grid(row=4, column=1, sticky="nsew") #create add class images to dataset checkbox self.add_class_images_to_dataset_var = tk.IntVar() self.add_class_images_to_dataset_var.set(self.add_class_images_to_training) #create label self.add_class_images_to_dataset_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Add Class Images to Dataset") add_class_images_to_dataset_label_ttp = CreateToolTip(self.add_class_images_to_dataset_label, "Will add class images without prior preservation to the dataset.") self.add_class_images_to_dataset_label.grid(row=5, column=0, sticky="nsew") #create checkbox self.add_class_images_to_dataset_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.add_class_images_to_dataset_var) self.add_class_images_to_dataset_checkbox.grid(row=5, column=1, sticky="nsew") #create number of class images entry self.number_of_class_images_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Number of Class Images") number_of_class_images_label_ttp = CreateToolTip(self.number_of_class_images_label, "The number of class images to add to the dataset, if they don't exist in the class directory they will be generated.") self.number_of_class_images_label.grid(row=6, column=0, sticky="nsew") self.number_of_class_images_entry = ctk.CTkEntry(self.dataset_frame_subframe) self.number_of_class_images_entry.grid(row=6, column=1, sticky="nsew") self.number_of_class_images_entry.insert(0, self.num_class_images) #create dataset repeat entry self.dataset_repeats_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Dataset Repeats") dataset_repeat_label_ttp = CreateToolTip(self.dataset_repeats_label, "The number of times to repeat the dataset, this will increase the number of images in the dataset.") self.dataset_repeats_label.grid(row=7, column=0, sticky="nsew") self.dataset_repeats_entry = ctk.CTkEntry(self.dataset_frame_subframe) self.dataset_repeats_entry.grid(row=7, column=1, sticky="nsew") self.dataset_repeats_entry.insert(0, self.dataset_repeats) #add use_aspect_ratio_bucketing checkbox self.use_aspect_ratio_bucketing_var = tk.IntVar() self.use_aspect_ratio_bucketing_var.set(self.use_aspect_ratio_bucketing) #create label self.use_aspect_ratio_bucketing_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Use Aspect Ratio Bucketing") use_aspect_ratio_bucketing_label_ttp = CreateToolTip(self.use_aspect_ratio_bucketing_label, "Will use aspect ratio bucketing, may improve aspect ratio generations.") self.use_aspect_ratio_bucketing_label.grid(row=8, column=0, sticky="nsew") #create checkbox self.use_aspect_ratio_bucketing_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.use_aspect_ratio_bucketing_var) self.use_aspect_ratio_bucketing_checkbox.grid(row=8, column=1, sticky="nsew") #do something on checkbox click self.use_aspect_ratio_bucketing_checkbox.bind("", self.aspect_ratio_mode_toggles) #option menu to select aspect ratio bucketing mode self.aspect_ratio_bucketing_mode_var = tk.StringVar() self.aspect_ratio_bucketing_mode_var.set(self.aspect_ratio_bucketing_mode) self.aspect_ratio_bucketing_mode_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Aspect Ratio Bucketing Mode") aspect_ratio_bucketing_mode_label_ttp = CreateToolTip(self.aspect_ratio_bucketing_mode_label, "Select what the Auto Bucketing will do in case the bucket doesn't match the batch size, dynamic will choose the least amount of adding/removing of images per bucket.") self.aspect_ratio_bucketing_mode_label.grid(row=9, column=0, sticky="nsew") self.aspect_ratio_bucketing_mode_option_menu = ctk.CTkOptionMenu(self.dataset_frame_subframe, variable=self.aspect_ratio_bucketing_mode_var, values=['Dynamic Fill', 'Drop Fill', 'Duplicate Fill']) self.aspect_ratio_bucketing_mode_option_menu.grid(row=9, column=1, sticky="nsew") #option menu to select dynamic bucketing mode (if enabled) self.dynamic_bucketing_mode_var = tk.StringVar() self.dynamic_bucketing_mode_var.set(self.dynamic_bucketing_mode) self.dynamic_bucketing_mode_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Dynamic Preference") dynamic_bucketing_mode_label_ttp = CreateToolTip(self.dynamic_bucketing_mode_label, "If you're using dynamic mode, choose what you prefer in the case that dropping and duplicating are the same amount of images.") self.dynamic_bucketing_mode_label.grid(row=10, column=0, sticky="nsew") self.dynamic_bucketing_mode_option_menu = ctk.CTkOptionMenu(self.dataset_frame_subframe, variable=self.dynamic_bucketing_mode_var, values=['Duplicate', 'Drop']) self.dynamic_bucketing_mode_option_menu.grid(row=10, column=1, sticky="nsew") #add shuffle dataset per epoch checkbox self.shuffle_dataset_per_epoch_var = tk.IntVar() self.shuffle_dataset_per_epoch_var.set(self.shuffle_dataset_per_epoch) #create label self.shuffle_dataset_per_epoch_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Shuffle Dataset Per Epoch") shuffle_dataset_per_epoch_label_ttp = CreateToolTip(self.shuffle_dataset_per_epoch_label, "Will shuffle the dataset per epoch, may improve training.") self.shuffle_dataset_per_epoch_label.grid(row=1, column=2, sticky="nsew") #create checkbox self.shuffle_dataset_per_epoch_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.shuffle_dataset_per_epoch_var) self.shuffle_dataset_per_epoch_checkbox.grid(row=1, column=3, sticky="nsew") #masked training self.masked_training_var = tk.IntVar() self.masked_training_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Masked Training") masked_training_label_ttp = CreateToolTip(self.masked_training_label, "Enable training on masked areas of the dataset.") self.masked_training_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.masked_training_var) self.masked_training_var.set(self.masked_training) self.masked_training_label.grid(row=2, column=2, sticky="nsew") self.masked_training_checkbox.grid(row=2, column=3, sticky="nsew") #normalize masked area loss self.normalize_masked_area_loss_var = tk.IntVar() self.normalize_masked_area_loss_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Normalize Masked Area Loss") normalize_masked_area_loss_label_ttp = CreateToolTip(self.normalize_masked_area_loss_label, "Normalize loss values based on the masked area of images.") self.normalize_masked_area_loss_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.normalize_masked_area_loss_var) self.normalize_masked_area_loss_var.set(self.normalize_masked_area_loss) self.normalize_masked_area_loss_label.grid(row=3, column=2, sticky="nsew") self.normalize_masked_area_loss_checkbox.grid(row=3, column=3, sticky="nsew") #unmasked probability self.unmasked_probability_var = tk.StringVar() self.unmasked_probability_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Unmasked Steps") unmasked_probability_label_ttp = CreateToolTip(self.unmasked_probability_label, "Fraction of steps to train on unmasked images.") self.unmasked_probability_var.set(self.unmasked_probability) self.unmasked_probability_entry = ctk.CTkEntry(self.dataset_frame_subframe, textvariable=self.unmasked_probability_var) self.unmasked_probability_label.grid(row=4, column=2, sticky="nsew") self.unmasked_probability_entry.grid(row=4, column=3, sticky="nsew") #unmasked probability self.max_denoising_strength_var = tk.StringVar() self.max_denoising_strength_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Max Denoising Strength") max_denoising_strength_label_ttp = CreateToolTip(self.max_denoising_strength_label, "Max denoising factor to train on. Set this to 70%-80% for masked training and to reduce overfitting. 100% is the default behavior for training on up to fully noisy images.") self.max_denoising_strength_var.set(self.max_denoising_strength) self.max_denoising_strength_entry = ctk.CTkEntry(self.dataset_frame_subframe, textvariable=self.max_denoising_strength_var) self.max_denoising_strength_label.grid(row=5, column=2, sticky="nsew") self.max_denoising_strength_entry.grid(row=5, column=3, sticky="nsew") #fallback mask prompt self.fallback_mask_prompt_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Fallback Mask Prompt") fallback_mask_prompt_label_ttp = CreateToolTip(self.fallback_mask_prompt_label, "A prompt used for masking images without a mask.") self.fallback_mask_prompt_entry = ctk.CTkEntry(self.dataset_frame_subframe) self.fallback_mask_prompt_entry.insert(0, self.fallback_mask_prompt) self.fallback_mask_prompt_label.grid(row=6, column=2, sticky="nsew") self.fallback_mask_prompt_entry.grid(row=6, column=3, sticky="nsew") #add download dataset entry #add a switch to duplicate fill bucket #self.duplicate_fill_buckets_var = tk.IntVar() #self.duplicate_fill_buckets_var.set(self.duplicate_fill_buckets) #create label #self.duplicate_fill_buckets_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Force Fill Buckets with Duplicates") #duplicate_fill_buckets_label_ttp = CreateToolTip(self.duplicate_fill_buckets_label, "Will duplicate to fill buckets, enable this to avoid buckets dropping images.") #self.duplicate_fill_buckets_label.grid(row=8, column=0, sticky="nsew") #create checkbox #self.duplicate_fill_buckets_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.duplicate_fill_buckets_var) #self.duplicate_fill_buckets_checkbox.grid(row=8, column=1, sticky="nsew") #self.use_aspect_ratio_bucketing_checkbox.bind("", self.duplicate_fill_buckets_label.configure(state="disabled")) #self.use_aspect_ratio_bucketing_checkbox.bind("", self.duplicate_fill_buckets_checkbox.configure(state="disabled")) def create_sampling_settings_widgets(self): self.sampling_title = ctk.CTkLabel(self.sampling_frame, text="Sampling Settings", font=ctk.CTkFont(size=20, weight="bold")) self.sampling_title.grid(row=0, column=0, padx=20, pady=20) #create sample every n steps entry self.sample_step_interval_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Every N Steps") sample_step_interval_label_ttp = CreateToolTip(self.sample_step_interval_label, "Will sample the model every N steps.") self.sample_step_interval_label.grid(row=1, column=0, sticky="nsew") self.sample_step_interval_entry = ctk.CTkEntry(self.sampling_frame_subframe) self.sample_step_interval_entry.grid(row=1, column=1, sticky="nsew") self.sample_step_interval_entry.insert(0, self.sample_step_interval) #create saver every n epochs entry self.save_every_n_epochs_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Save and sample Every N Epochs") save_every_n_epochs_label_ttp = CreateToolTip(self.save_every_n_epochs_label, "Will save and sample the model every N epochs.") self.save_every_n_epochs_label.grid(row=2, column=0, sticky="nsew") self.save_every_n_epochs_entry = ctk.CTkEntry(self.sampling_frame_subframe) self.save_every_n_epochs_entry.grid(row=2, column=1, sticky="nsew") self.save_every_n_epochs_entry.insert(0, self.save_and_sample_every_x_epochs) #create number of samples to generate entry self.number_of_samples_to_generate_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Number of Samples to Generate") number_of_samples_to_generate_label_ttp = CreateToolTip(self.number_of_samples_to_generate_label, "The number of samples to generate per prompt.") self.number_of_samples_to_generate_label.grid(row=3, column=0, sticky="nsew") self.number_of_samples_to_generate_entry = ctk.CTkEntry(self.sampling_frame_subframe) self.number_of_samples_to_generate_entry.grid(row=3, column=1, sticky="nsew") self.number_of_samples_to_generate_entry.insert(0, self.num_samples_to_generate) #create sample width entry self.sample_width_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Width") sample_width_label_ttp = CreateToolTip(self.sample_width_label, "The width of the generated samples.") self.sample_width_label.grid(row=4, column=0, sticky="nsew") self.sample_width_entry = ctk.CTkEntry(self.sampling_frame_subframe) self.sample_width_entry.grid(row=4, column=1, sticky="nsew") self.sample_width_entry.insert(0, self.sample_width) #create sample height entry self.sample_height_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Height") sample_height_label_ttp = CreateToolTip(self.sample_height_label, "The height of the generated samples.") self.sample_height_label.grid(row=5, column=0, sticky="nsew") self.sample_height_entry = ctk.CTkEntry(self.sampling_frame_subframe) self.sample_height_entry.grid(row=5, column=1, sticky="nsew") self.sample_height_entry.insert(0, self.sample_height) #create a checkbox to sample_on_training_start self.sample_on_training_start_var = tk.IntVar() self.sample_on_training_start_var.set(self.sample_on_training_start) #create label self.sample_on_training_start_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample On Training Start") sample_on_training_start_label_ttp = CreateToolTip(self.sample_on_training_start_label, "Will save and sample the model on training start, useful for debugging and comparison.") self.sample_on_training_start_label.grid(row=6, column=0, sticky="nsew") #create checkbox self.sample_on_training_start_checkbox = ctk.CTkSwitch(self.sampling_frame_subframe, variable=self.sample_on_training_start_var) self.sample_on_training_start_checkbox.grid(row=6, column=1, sticky="nsew") #create sample random aspect ratio checkbox self.sample_random_aspect_ratio_var = tk.IntVar() self.sample_random_aspect_ratio_var.set(self.sample_random_aspect_ratio) #create label self.sample_random_aspect_ratio_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Random Aspect Ratio") sample_random_aspect_ratio_label_ttp = CreateToolTip(self.sample_random_aspect_ratio_label, "Will generate samples with random aspect ratios, useful to check aspect ratio bucketing.") self.sample_random_aspect_ratio_label.grid(row=7, column=0, sticky="nsew") #create checkbox self.sample_random_aspect_ratio_checkbox = ctk.CTkSwitch(self.sampling_frame_subframe, variable=self.sample_random_aspect_ratio_var) self.sample_random_aspect_ratio_checkbox.grid(row=7, column=1, sticky="nsew") #create an optionmenu to select a number of desired prompts to sample from the batch self.batch_prompt_sampling_optionmenu_var = tk.StringVar() self.batch_prompt_sampling_optionmenu_var.set(self.batch_prompt_sampling_num_prompts) self.batch_prompt_sampling_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Batch Prompt Sampling") self.batch_prompt_sampling_label.grid(row=8, column=0, sticky="nsew") self.batch_prompt_sampling_optionmenu = ctk.CTkOptionMenu(self.sampling_frame_subframe, variable=self.batch_prompt_sampling_optionmenu_var, values=['0','1','2','3','4','5','6','7','8','9','10']) self.batch_prompt_sampling_optionmenu_ttp = CreateToolTip(self.batch_prompt_sampling_label, "Will try to sample prompts/tokens from the batch to use as prompts for the samples.") self.batch_prompt_sampling_optionmenu.grid(row=8, column=1, sticky="nsew") #create add sample prompt button self.add_sample_prompt_button = ctk.CTkButton(self.sampling_frame_subframe, text="Add Sample Prompt", command=self.add_sample_prompt) add_sample_prompt_button_ttp = CreateToolTip(self.add_sample_prompt_button, "Add a sample prompt to the list.") self.add_sample_prompt_button.grid(row=1, column=2, sticky="nsew") #create remove sample prompt button self.remove_sample_prompt_button = ctk.CTkButton(self.sampling_frame_subframe, text="Remove Sample Prompt", command=self.remove_sample_prompt) remove_sample_prompt_button_ttp = CreateToolTip(self.remove_sample_prompt_button, "Remove a sample prompt from the list.") self.remove_sample_prompt_button.grid(row=1, column=3, sticky="nsew") #for every prompt in self.sample_prompts, create a label and entry self.sample_prompt_labels = [] self.sample_prompt_entries = [] self.sample_prompt_row = 2 for i in range(len(self.sample_prompts)): #create label self.sample_prompt_labels.append(ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Prompt " + str(i))) self.sample_prompt_labels[i].grid(row=self.sample_prompt_row + i, column=2, sticky="nsew") #create entry self.sample_prompt_entries.append(ctk.CTkEntry(self.sampling_frame_subframe, width=70)) self.sample_prompt_entries[i].grid(row=self.sample_prompt_row + i, column=3, sticky="nsew") self.sample_prompt_entries[i].insert(0, self.sample_prompts[i]) for i in self.sample_prompt_entries: i.bind("", self.create_right_click_menu) self.controlled_sample_row = 2 + len(self.sample_prompts) #create a button to add controlled seed sample self.add_controlled_seed_sample_button = ctk.CTkButton(self.sampling_frame_subframe, text="Add Controlled Seed Sample", command=self.add_controlled_seed_sample) add_controlled_seed_sample_button_ttp = CreateToolTip(self.add_controlled_seed_sample_button, "Will generate a sample using the seed at every save interval.") self.add_controlled_seed_sample_button.grid(row=self.controlled_sample_row + len(self.sample_prompts), column=2, sticky="nsew") #create a button to remove controlled seed sample self.remove_controlled_seed_sample_button = ctk.CTkButton(self.sampling_frame_subframe, text="Remove Controlled Seed Sample", command=self.remove_controlled_seed_sample) remove_controlled_seed_sample_button_ttp = CreateToolTip(self.remove_controlled_seed_sample_button, "Will remove the last controlled seed sample.") self.remove_controlled_seed_sample_button.grid(row=self.controlled_sample_row + len(self.sample_prompts), column=3, sticky="nsew") #for every controlled seed sample in self.controlled_seed_samples, create a label and entry self.controlled_seed_sample_labels = [] self.controlled_seed_sample_entries = [] self.controlled_seed_buttons = [self.add_controlled_seed_sample_button, self.remove_controlled_seed_sample_button] for i in range(len(self.add_controlled_seed_to_sample)): #create label self.controlled_seed_sample_labels.append(ctk.CTkLabel(self.sampling_frame_subframe, text="Controlled Seed Sample " + str(i))) self.controlled_seed_sample_labels[i].grid(row=self.controlled_sample_row + len(self.sample_prompts) + i, column=2, sticky="nsew") #create entry self.controlled_seed_sample_entries.append(ctk.CTkEntry(self.sampling_frame_subframe)) self.controlled_seed_sample_entries[i].grid(row=self.controlled_sample_row + len(self.sample_prompts) + i, column=3, sticky="nsew") self.controlled_seed_sample_entries[i].insert(0, self.add_controlled_seed_to_sample[i]) for i in self.controlled_seed_sample_entries: i.bind("", self.create_right_click_menu) def create_data_settings_widgets(self): #add concept settings label self.data_frame_title = ctk.CTkLabel(self.data_frame, text='Data Settings', font=ctk.CTkFont(size=20, weight="bold")) self.data_frame_title.grid(row=0, column=0,columnspan=2, padx=20, pady=20) #add load concept from json button #add empty label empty = ctk.CTkLabel(self.data_frame_subframe, text="",width=40) empty.grid(row=1, column=0, sticky="nsew") self.load_concept_from_json_button = ctk.CTkButton(self.data_frame_subframe, text="Load Concepts From JSON", command=self.load_concept_from_json) self.load_concept_from_json_button.grid(row=1, column=1, sticky="e") load_concept_from_json_button_ttp = CreateToolTip(self.load_concept_from_json_button, "Load concepts from a JSON file, compatible with Shivam's concept list.") #self.load_concept_from_json_button.grid(row=1, column=0, sticky="nsew") #add save concept to json button self.save_concept_to_json_button = ctk.CTkButton(self.data_frame_subframe, text="Save Concepts To JSON", command=self.save_concept_to_json) self.save_concept_to_json_button.grid(row=1, column=2, sticky="e") save_concept_to_json_button_ttp = CreateToolTip(self.save_concept_to_json_button, "Save concepts to a JSON file, compatible with Shivam's concept list.") #self.save_concept_to_json_button.grid(row=1, column=1, sticky="nsew") #create a button to add concept self.add_concept_button = ctk.CTkButton(self.data_frame_subframe, text="Add Concept", command=self.add_new_concept,width=50) self.add_concept_button.grid(row=1, column=3, sticky="e") #self.add_concept_button.grid(row=2, column=0, sticky="nsew") #create a button to remove concept self.remove_concept_button = ctk.CTkButton(self.data_frame_subframe, text="Remove Concept", command=self.remove_new_concept,width=50) self.remove_concept_button.grid(row=1, column=4, sticky="e") #self.remove_concept_button.grid(row=2, column=1, sticky="nsew") self.previous_page_button = ctk.CTkButton(self.data_frame_subframe, text="Previous Page", command=self.next_concept_page,width=50, state="disabled") self.previous_page_button.grid(row=1, column=5, sticky="e") #self.remove_concept_button.grid(row=2, column=1, sticky="nsew") self.next_page_button = ctk.CTkButton(self.data_frame_subframe, text="Next Page", command=self.next_concept_page,width=50, state="disabled") self.next_page_button.grid(row=1, column=6, sticky="e") #self.remove_concept_button.grid(row=2, column=1, sticky="nsew") #self.concept_entries = [] #self.concept_labels = [] #self.concept_file_dialog_buttons = [] def next_concept_page(self): self.concept_page += 1 self.update_concept_page() def create_plyaground_widgets(self): self.playground_title = ctk.CTkLabel(self.playground_frame, text="Model Playground", font=ctk.CTkFont(size=20, weight="bold")) #add play model entry with button to open file dialog self.play_model_label = ctk.CTkLabel(self.playground_frame_subframe, text="Diffusers Model Directory") self.play_model_entry = ctk.CTkEntry(self.playground_frame_subframe,placeholder_text="CTkEntry") self.play_model_entry.insert(0, self.play_input_model_path) self.play_model_file_dialog_button = ctk.CTkButton(self.playground_frame_subframe, text="...",width=5, command=lambda: self.open_file_dialog(self.play_model_entry)) self.play_model_file_dialog_button.grid(row=0, column=2, sticky="w") #add a prompt entry to play tab self.play_prompt_label = ctk.CTkLabel(self.playground_frame_subframe, text="Prompt") self.play_prompt_entry = ctk.CTkEntry(self.playground_frame_subframe) self.play_prompt_entry.insert(0, self.play_postive_prompt) #add a negative prompt entry to play tab self.play_negative_prompt_label = ctk.CTkLabel(self.playground_frame_subframe, text="Negative Prompt") self.play_negative_prompt_entry = ctk.CTkEntry(self.playground_frame_subframe, width=40) self.play_negative_prompt_entry.insert(0, self.play_negative_prompt) #add a seed entry to play tab self.play_seed_label = ctk.CTkLabel(self.playground_frame_subframe, text="Seed") self.play_seed_entry = ctk.CTkEntry(self.playground_frame_subframe) self.play_seed_entry.insert(0, self.play_seed) #add a keep seed checkbox next to seed entry self.play_keep_seed_var = tk.IntVar() self.play_keep_seed_var.set(self.play_keep_seed) self.play_keep_seed_checkbox = ctk.CTkCheckBox(self.playground_frame_subframe, text="Keep Seed", variable=self.play_keep_seed_var) #add a temperature slider from 0.1 to 1.0 #create a steps slider from 1 to 100 self.play_steps_label = ctk.CTkLabel(self.playground_frame_subframe, text=f"Steps: {self.play_steps}") self.play_steps_slider = ctk.CTkSlider(self.playground_frame_subframe, from_=1, to=150, number_of_steps=149, command= lambda x: self.play_steps_label.configure(text="Steps: " + str(int(self.play_steps_slider.get())))) #on slider change update the value #self.play_steps_slider.bind("", self.play_steps_label.configure(text="Steps: " + str(self.play_steps_slider.get()))) self.play_steps_slider.set(self.play_steps) #add a scheduler selection box self.play_scheduler_label = ctk.CTkLabel(self.playground_frame_subframe, text="Scheduler") self.play_scheduler_variable = tk.StringVar(self.playground_frame_subframe) self.play_scheduler_variable.set(self.play_scheduler) self.play_scheduler_option_menu = ctk.CTkOptionMenu(self.playground_frame_subframe, variable=self.play_scheduler_variable, values=self.schedulers) #add resoltuion slider from 256 to 1024 in increments of 64 for width and height self.play_resolution_label = ctk.CTkLabel(self.playground_frame_subframe, text="Resolution") self.play_resolution_label_height = ctk.CTkLabel(self.playground_frame_subframe, text=f"Height: {self.play_sample_height}") self.play_resolution_label_width = ctk.CTkLabel(self.playground_frame_subframe, text=f"Width: {self.play_sample_width}") #add sliders for height and width #make a list of resolutions from 256 to 2048 in increments of 64 #play_resolutions = [] #for i in range(256,2049,64): # play_resolutions.append(str(i)) self.play_resolution_slider_height = ctk.CTkSlider(self.playground_frame_subframe,from_=128, to=2048, number_of_steps=30, command= lambda x: self.play_resolution_label_height.configure(text="Height: " + str(int(self.play_resolution_slider_height.get())))) self.play_resolution_slider_width = ctk.CTkSlider(self.playground_frame_subframe, from_=128, to=2048, number_of_steps=30, command= lambda x: self.play_resolution_label_width.configure(text="Width: " + str(int(self.play_resolution_slider_width.get())))) self.play_resolution_slider_width.set(self.play_sample_width) self.play_resolution_slider_height.set(self.play_sample_height) #add a cfg slider 0.5 to 25 in increments of 0.5 self.play_cfg_label = ctk.CTkLabel(self.playground_frame_subframe, text=f"CFG: {self.play_cfg}") self.play_cfg_slider = ctk.CTkSlider(self.playground_frame_subframe, from_=0.5, to=25, number_of_steps=49, command= lambda x: self.play_cfg_label.configure(text="CFG: " + str(self.play_cfg_slider.get()))) self.play_cfg_slider.set(self.play_cfg) #add Toolbox label self.play_toolbox_label = ctk.CTkLabel(self.playground_frame_subframe, text="Toolbox") self.play_generate_image_button = ctk.CTkButton(self.playground_frame_subframe, text="Generate Image", command=lambda: self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get())) #create a canvas to display the generated image #self.play_image_canvas = tk.Canvas(self.playground_frame_subframe, width=512, height=512, highlightthickness=0) #self.play_image_canvas.grid(row=11, column=0, columnspan=3, sticky="nsew") #create a button to generate image self.play_prompt_entry.bind("", lambda event: self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get())) self.play_negative_prompt_entry.bind("", lambda event: self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get())) #add convert to ckpt button self.play_convert_to_ckpt_button = ctk.CTkButton(self.playground_frame_subframe, text="Convert To CKPT", command=lambda:self.convert_to_ckpt(model_path=self.play_model_entry.get())) #add interative generation button to act as a toggle #convert to safetensors button #self.play_interactive_generation_button_bool = tk.BooleanVar() #self.play_interactive_generation_button = ctk.CTkButton(self.playground_frame_subframe, text="Interactive Generation", command=self.interactive_generation_button) #self.play_interactive_generation_button_bool.set(False)#add play model entry with button to open file dialog def create_toolbox_widgets(self): #add label to tools tab self.toolbox_title = ctk.CTkLabel(self.toolbox_frame, text="Toolbox", font=ctk.CTkFont(size=20, weight="bold")) self.toolbox_title.grid(row=0, column=0, padx=20, pady=20) #empty row #self.empty_row = ctk.CTkLabel(self.toolbox_frame_subframe, text="") #self.empty_row.grid(row=1, column=0, sticky="nsew") #add a label model tools title self.model_tools_label = ctk.CTkLabel(self.toolbox_frame_subframe, text="Model Tools", font=ctk.CTkFont(size=20, weight="bold")) self.model_tools_label.grid(row=2, column=0,columnspan=3, sticky="nsew",pady=10) #empty row #self.empty_row = ctk.CTkLabel(self.toolbox_frame_subframe, text="") #self.empty_row.grid(row=3, column=0, sticky="nsew") #add a button to convert to ckpt self.convert_to_ckpt_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Convert Diffusers To CKPT", command=lambda:self.convert_to_ckpt()) self.convert_to_ckpt_button.grid(row=4, column=0, columnspan=1, sticky="nsew") #convert to safetensors button self.convert_to_safetensors_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Convert Diffusers To SafeTensors", command=lambda:self.convert_to_safetensors()) self.convert_to_safetensors_button.grid(row=4, column=1, columnspan=1, sticky="nsew") #add a button to convert ckpt to diffusers self.convert_ckpt_to_diffusers_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Convert CKPT To Diffusers", command=lambda:self.convert_ckpt_to_diffusers()) self.convert_ckpt_to_diffusers_button.grid(row=4, column=2, columnspan=1, sticky="nsew") #empty row self.empty_row = ctk.CTkLabel(self.toolbox_frame_subframe, text="") self.empty_row.grid(row=6, column=0, sticky="nsew") #add a label dataset tools title self.dataset_tools_label = ctk.CTkLabel(self.toolbox_frame_subframe, text="Dataset Tools", font=ctk.CTkFont(size=20, weight="bold")) self.dataset_tools_label.grid(row=7, column=0,columnspan=3, sticky="nsew") #add a button for Caption Buddy #self.caption_buddy_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Launch Caption Buddy",font=("Helvetica", 10, "bold"), command=lambda:self.caption_buddy()) #self.caption_buddy_button.grid(row=8, column=0, columnspan=3, sticky="nsew") self.download_dataset_label = ctk.CTkLabel(self.toolbox_frame_subframe, text="Clone Dataset from HF") download_dataset_label_ttp = CreateToolTip(self.download_dataset_label, "Will git clone a HF dataset repo") self.download_dataset_label.grid(row=9, column=0, sticky="nsew") self.download_dataset_entry = ctk.CTkEntry(self.toolbox_frame_subframe) self.download_dataset_entry.grid(row=9, column=1, sticky="nsew") #add download dataset button self.download_dataset_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Download Dataset", command=self.download_dataset) self.download_dataset_button.grid(row=9, column=2, sticky="nsew") def find_latest_generated_model(self,entry=None): last_output_path = self.output_path_entry.get() last_num_epochs = self.train_epochs_entry.get() last_model_path = last_output_path + os.sep + last_num_epochs #convert last_model_path seperators to the correct ones for the os last_model_path = last_model_path.replace("/", os.sep) last_model_path = last_model_path.replace("\\", os.sep) #check if the output path is valid if last_output_path != "": #check if the output path exists if os.path.exists(last_output_path): #check if the output path has a model in it if os.path.exists(last_model_path): #check if the model is a ckpt if all(x in os.listdir(last_model_path) for x in self.required_folders): # print(newest_dir) last_model_path = last_model_path.replace("/", os.sep).replace("\\", os.sep) if entry: entry.delete(0, tk.END) entry.insert(0, last_model_path) return else: newest_dirs = sorted(glob.iglob(last_output_path + os.sep + '*'), key=os.path.getctime, reverse=True) #remove anything that is not a dir newest_dirs = [x for x in newest_dirs if os.path.isdir(x)] #sort newest_dirs by date for newest_dir in newest_dirs: #check if the newest dir has all the required folders if all(x in os.listdir(newest_dir) for x in self.required_folders): last_model_path = newest_dir.replace("/", os.sep).replace("\\", os.sep) if entry: entry.delete(0, tk.END) entry.insert(0, last_model_path) return else: newest_dirs = sorted(glob.iglob(last_output_path + os.sep + '*'), key=os.path.getctime, reverse=True) newest_dirs = [x for x in newest_dirs if os.path.isdir(x)] #sort newest_dirs by date for newest_dir in newest_dirs: #check if the newest dir has all the required folders if all(x in os.listdir(newest_dir) for x in self.required_folders): last_model_path = newest_dir.replace("/", os.sep).replace("\\", os.sep) if entry: entry.delete(0, tk.END) entry.insert(0, last_model_path) return else: return else: return def update_ST(self): #git new_version = subprocess.check_output(["git", "ls-remote", "http://github.com/RossM/StableTuner.git","main"], cwd=Path(__file__).resolve().parent).strip().decode()[0:7] #open the stabletuner_hash.cfg file #update the stabletuner_hash.cfg file with open("configs/stabletuner_hash.cfg", "w") as f: f.write(new_version) #update the stabletuner #self.update_stabletuner() #git pull and wait for it to finish subprocess.run(["git", "stash"], cwd=Path(__file__).resolve().parent) subprocess.run(["git", "pull"], cwd=Path(__file__).resolve().parent) print('pulled') #restart the app restart(self) def packageForCloud(self): #check if there's an export folder in the cwd and if not create one if not os.path.exists("exports"): os.mkdir("exports") exportDir = self.export_name if not os.path.exists("exports" + os.sep + exportDir): os.mkdir("exports" + os.sep + exportDir) else: #remove the old export folder shutil.rmtree("exports" + os.sep + exportDir) os.mkdir("exports" + os.sep + exportDir) self.full_export_path = "exports" + os.sep + exportDir os.mkdir(self.full_export_path + os.sep + 'output') os.mkdir(self.full_export_path + os.sep + 'datasets') #check if self.model_path is a directory if os.path.isdir(self.model_path): #get the directory name model_name = os.path.basename(self.model_path) #check if model_name can be an int try: model_name = int(model_name) #get the parent directory name model_name = os.path.basename(os.path.dirname(self.model_path)) except: pass #create a folder in the export folder with the model name if not os.path.exists(self.full_export_path + os.sep + 'input_model'+ os.sep): os.mkdir(self.full_export_path + os.sep + 'input_model'+ os.sep) if not os.path.exists(self.full_export_path + os.sep + 'input_model'+ os.sep + model_name): os.mkdir(self.full_export_path + os.sep + 'input_model'+ os.sep + model_name) #copy the model to the export folder shutil.copytree(self.model_path, self.full_export_path + os.sep +'input_model'+ os.sep+ model_name + os.sep,dirs_exist_ok=True) self.model_path= 'input_model' + '/' + model_name if os.path.isdir(self.vae_path): #get the directory name vae_name = os.path.basename(self.vae_path) #create a folder in the export folder with the model name if not os.path.exists(self.full_export_path + os.sep + 'input_vae_model'+ os.sep + vae_name): os.mkdir(self.full_export_path + os.sep + 'input_vae_model'+ os.sep + vae_name) #copy the model to the export folder shutil.copytree(self.vae_path, self.full_export_path + os.sep +'input_vae_model'+ os.sep+ vae_name + os.sep + vae_name,dirs_exist_ok=True) self.vae_path= 'input_vae_model' + '/' + vae_name if self.output_path == '': self.output_path = 'output' else: #get the dirname output_name = os.path.basename(self.output_path) #create a folder in the export folder with the model name if not os.path.exists(self.full_export_path + os.sep + 'output'+ os.sep + output_name): os.mkdir(self.full_export_path + os.sep + 'output'+ os.sep + output_name) self.output_path = 'output' + '/' + output_name #loop through the concepts and add them to the export folder concept_counter = 0 new_concepts = [] for concept in self.concepts: concept_counter += 1 concept_data_dir = os.path.basename(concept['instance_data_dir']) #concept is a dict #get the concept name concept_name = concept['instance_prompt'] #if concept_name is '' if concept_name == '': concept_name = 'concept_' + str(concept_counter) #create a folder in the export/datasets folder with the concept name #if not os.path.exists(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_name): # os.mkdir(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_name) #copy the concept to the export folder shutil.copytree(concept['instance_data_dir'], self.full_export_path + os.sep + 'datasets'+ os.sep + concept_data_dir ,dirs_exist_ok=True) concept_class_name = concept['class_prompt'] if concept_class_name == '': #if class_data_dir is '' if concept['class_data_dir'] != '': concept_class_name = 'class_' + str(concept_counter) #create a folder in the export/datasets folder with the concept name if not os.path.exists(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name): os.mkdir(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name) #copy the concept to the export folder shutil.copytree(concept['class_data_dir'], self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name+ os.sep,dirs_exist_ok=True) else: if concept['class_data_dir'] != '': #create a folder in the export/datasets folder with the concept name if not os.path.exists(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name): os.mkdir(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name) #copy the concept to the export folder shutil.copytree(concept['class_data_dir'], self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name+ os.sep,dirs_exist_ok=True) #create a new concept dict new_concept = {} new_concept['instance_prompt'] = concept_name new_concept['instance_data_dir'] = 'datasets' + '/' + concept_data_dir new_concept['class_prompt'] = concept_class_name new_concept['class_data_dir'] = 'datasets' + '/' + concept_class_name if concept_class_name != '' else '' new_concept['do_not_balance'] = concept['do_not_balance'] new_concept['use_sub_dirs'] = concept['use_sub_dirs'] new_concepts.append(new_concept) #make scripts folder self.save_concept_to_json(filename=self.full_export_path + os.sep + 'stabletune_concept_list.json', preMadeConcepts=new_concepts) if not os.path.exists(self.full_export_path + os.sep + 'scripts'): os.mkdir(self.full_export_path + os.sep + 'scripts') #copy the scripts/trainer.py the scripts folder shutil.copy('scripts' + os.sep + 'trainer.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'trainer.py') #copy trainer_utils.py to the scripts folder shutil.copy('scripts' + os.sep + 'trainer_util.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'trainer_util.py') #copy converters.py to the scripts folder shutil.copy('scripts' + os.sep + 'converters.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'converters.py') #copy model_util.py to the scripts folder shutil.copy('scripts' + os.sep + 'model_util.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'model_util.py') #copy clip_seg to the scripts folder shutil.copy('scripts' + os.sep + 'clip_segmentation.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'clip_segmentation.py') def caption_buddy(self): import captionBuddy #self.master.overrideredirect(False) self.iconify() #cb_root = tk.Tk() cb_icon =PhotoImage(master=self,file = "resources/stableTuner_icon.png") #cb_root.iconphoto(False, cb_icon) app2 = captionBuddy.ImageBrowser(self) app2.iconphoto(False, cb_icon) #app = app2.mainloop() #check if app2 is running #self.master.overrideredirect(True) #self.master.deiconify() def aspect_ratio_mode_toggles(self, *args): if self.use_aspect_ratio_bucketing_var.get() == 1: self.with_prior_loss_preservation_var.set(0) self.with_prior_loss_preservation_checkbox.configure(state="disabled") self.aspect_ratio_bucketing_mode_label.configure(state="normal") self.aspect_ratio_bucketing_mode_option_menu.configure(state="normal") self.dynamic_bucketing_mode_label.configure(state="normal") self.dynamic_bucketing_mode_option_menu.configure(state="normal") else: self.with_prior_loss_preservation_checkbox.configure(state="normal") self.aspect_ratio_bucketing_mode_label.configure(state="disabled") self.aspect_ratio_bucketing_mode_option_menu.configure(state="disabled") self.dynamic_bucketing_mode_label.configure(state="disabled") self.dynamic_bucketing_mode_option_menu.configure(state="disabled") def download_dataset(self): #get the dataset name #import datasets from git import Repo folder = fd.askdirectory() dataset_name = self.download_dataset_entry.get() url = "https://huggingface.co/datasets/" + dataset_name if "/" not in dataset_name[0] else "/" + dataset_name Repo.clone_from(url, folder) #dataset = load_dataset(dataset_name) #for each item in the dataset save it to a file in a folder with the name of the dataset #create the folder #get user to pick a folder #git clone hugging face repo #using def interactive_generation_button(self): #get state of button button_state = self.play_interactive_generation_button_bool.get() #flip the state of the button self.play_interactive_generation_button_bool.set(not button_state) #if the button is now true if self.play_interactive_generation_button_bool.get(): #change the background of the button to green #self.play_interactive_generation_button.configure() pass else: #change the background of the button to normal pass #self.play_interactive_generation_button.configure(fg=self.dark_mode_title_var) def play_save_image(self): file = fd.asksaveasfilename(defaultextension=".png", filetypes=[("PNG", "*.png")]) #check if png in file name if ".png" not in file and file != "" and self.play_current_image: file = file + ".png" self.play_current_image.save(file) def generate_next_image(self): self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get()) def play_generate_image(self, model, prompt, negative_prompt, seed, scheduler, sample_height, sample_width, cfg, steps): import diffusers import torch from diffusers.utils.import_utils import is_xformers_available self.play_height = sample_height self.play_width = sample_width #interactive = self.play_interactive_generation_button_bool.get() #update generate image button text if self.pipe is None or self.play_model_entry.get() != self.current_model: if self.pipe is not None: del self.pipe #clear torch cache torch.cuda.empty_cache() self.play_generate_image_button["text"] = "Loading Model, Please stand by..." #self.play_generate_image_button.configure(fg="red") self.play_generate_image_button.update() self.pipe = diffusers.DiffusionPipeline.from_pretrained(model,torch_dtype=torch.float16,safety_checker=None) if isinstance(self.pipe, StableDiffusionPipeline): self.play_model_variant = 'base' if isinstance(self.pipe, StableDiffusionInpaintPipeline): self.play_model_variant = 'inpainting' if isinstance(self.pipe, StableDiffusionDepth2ImgPipeline): self.play_model_variant = 'depth2img' self.pipe.to('cuda') self.current_model = model if scheduler == 'DPMSolverMultistepScheduler': scheduler = diffusers.DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) if scheduler == 'PNDMScheduler': scheduler = diffusers.PNDMScheduler.from_config(self.pipe.scheduler.config) if scheduler == 'DDIMScheduler': scheduler = diffusers.DDIMScheduler.from_config(self.pipe.scheduler.config) if scheduler == 'EulerAncestralDiscreteScheduler': scheduler = diffusers.EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) if scheduler == 'EulerDiscreteScheduler': scheduler = diffusers.EulerDiscreteScheduler.from_config(self.pipe.scheduler.config) self.pipe.scheduler = scheduler if is_xformers_available(): try: self.pipe.enable_xformers_memory_efficient_attention() except Exception as e: print( "Could not enable memory efficient attention. Make sure xformers is installed" f" correctly and a GPU is available: {e}" ) def displayInterImg(step: int, timestep: int, latents: torch.FloatTensor): #tensor to image img = self.pipe.decode_latents(latents) image = self.pipe.numpy_to_pil(img)[0] #convert to PIL image self.play_current_image = ctk.CTkImage(image) #if step == 0: #self.play_image_canvas.configure(width=self.play_width, height=self.play_height) #if self.play_width < self.master.winfo_width(): #self.play_width = self.master.winfo_width() #self.master.geometry(f"{self.play_width}x{self.play_height+300}") #self.play_image = self.play_image_canvas.create_image(0, 0, anchor="nw", image=self.play_current_image) #self.play_image_canvas.update() #update image self.play_image_canvas.itemconfig(self.play_image, image=self.play_current_image) self.play_image_canvas.update() with torch.autocast("cuda"), torch.inference_mode(): del self.play_current_image torch.cuda.empty_cache() if seed == "" or seed == " ": seed = -1 seed = int(seed) if seed == -1 or seed == 0 or self.play_keep_seed_var.get() == 0: #random seed seed = random.randint(0, 10000000) self.play_seed_entry.delete(0, "end") self.play_seed_entry.insert(0, seed) generator = torch.Generator("cuda").manual_seed(seed) #self.play_generate_image_button["text"] = "Generating, Please stand by..." #self.play_generate_image_button.configure(fg=self.dark_mode_title_var) #self.play_generate_image_button.update() if self.play_model_variant == 'base': image = self.pipe(prompt=prompt, negative_prompt=negative_prompt, height=int(sample_height), width=int(sample_width), guidance_scale=cfg, num_inference_steps=int(steps), generator=generator).images[0] if self.play_model_variant == 'inpainting': conditioning_image = torch.zeros(1, 3, int(sample_height), int(sample_width)) mask = torch.ones(1, 1, int(sample_height), int(sample_width)) image = self.pipe(prompt, conditioning_image, mask, height=int(sample_height), width=int(sample_width), guidance_scale=cfg, num_inference_steps=int(steps), generator=generator).images[0] if self.play_model_variant == 'depth2img': test_image = Image.new('RGB', (int(sample_width), int(sample_height)), (255, 255, 255)) image = self.pipe(prompt, image=test_image, height=int(sample_height), width=int(sample_width), guidance_scale=cfg, num_inference_steps=int(steps), strength=1.0, generator=generator).images[0] self.play_current_image = image #image is PIL image if self.generation_window is None: self.generation_window = GeneratedImagePreview(self) self.generation_window.ingest_image(self.play_current_image) #focus self.generation_window.focus_set() #image = ctk.CTkImage(image) #self.play_image_canvas.configure(width=sample_width, height=sample_height) #self.play_image_canvas.create_image(0, 0, anchor="nw", image=image) #self.play_image_canvas.image = image #resize app to fit image, add current height to image height #if sample width is lower than current width, use current width #if sample_width < self.master.winfo_width(): # sample_width = self.master.winfo_width() #self.master.geometry(f"{sample_width}x{sample_height+self.tabsSizes[5][1]}") #refresh the window if self.play_save_image_button == None: self.play_save_image_button = ctk.CTkButton(self.playground_frame_subframe, text="Save Image", command=self.play_save_image) self.play_save_image_button.grid(row=10, column=2, columnspan=1, sticky="ew", padx=5, pady=5) #self.master.update() #self.play_generate_image_button["text"] = "Generate Image" #normal text #self.play_generate_image_button.configure(fg=self.dark_mode_text_var) def convert_ckpt_to_diffusers(self,ckpt_path=None, output_path=None): if ckpt_path is None: ckpt_path = fd.askopenfilename(initialdir=os.getcwd(),title = "Select CKPT file",filetypes = (("ckpt files","*.ckpt"),("all files","*.*"))) if output_path is None: #file dialog to save diffusers model output_path = fd.askdirectory(initialdir=os.getcwd(), title="Select where to save Diffusers Model Directory") version, prediction = self.get_sd_version(ckpt_path) #self.convert_model_dialog = ctk.CTkToplevel(self, takefocus=True) #self.convert_model_dialog.title("Converting model") #label #empty_label = ctk.CTkLabel(self.convert_model_dialog, text="") #empty_label.pack() #label = ctk.CTkLabel(self.convert_model_dialog, text="Converting CKPT to Diffusers. Please wait...") #label.pack() #self.convert_model_dialog.geometry("300x70") #self.convert_model_dialog.resizable(False, False) #self.convert_model_dialog.grab_set() #self.convert_model_dialog.focus_set() #self.update() convert = converters.Convert_SD_to_Diffusers(ckpt_path,output_path,prediction_type=prediction,version=version) #self.convert_model_dialog.destroy() def convert_to_ckpt(self,model_path=None, output_path=None,name=None): if model_path is None: model_path = fd.askdirectory(initialdir=self.output_path_entry.get(), title="Select Diffusers Model Directory") #check if model path has vae,unet,text_encoder,tokenizer,scheduler and args.json and model_index.json if output_path is None: output_path = fd.asksaveasfilename(initialdir=os.getcwd(),title = "Save CKPT file",filetypes = (("ckpt files","*.ckpt"),("all files","*.*"))) if not os.path.exists(model_path) and not os.path.exists(os.path.join(model_path,"vae")) and not os.path.exists(os.path.join(model_path,"unet")) and not os.path.exists(os.path.join(model_path,"text_encoder")) and not os.path.exists(os.path.join(model_path,"tokenizer")) and not os.path.exists(os.path.join(model_path,"scheduler")) and not os.path.exists(os.path.join(model_path,"args.json")) and not os.path.exists(os.path.join(model_path,"model_index.json")): messagebox.showerror("Error", "Couldn't find model structure in path") return #check if ckpt in output path if name != None: output_path = os.path.join(output_path,name+".ckpt") if not output_path.endswith(".ckpt") and output_path != "": #add ckpt to output path output_path = output_path + ".ckpt" if not output_path or output_path == "": return self.convert_model_dialog = ctk.CTkToplevel(self) self.convert_model_dialog.title("Converting model") #label empty_label = ctk.CTkLabel(self.convert_model_dialog, text="") empty_label.pack() label = ctk.CTkLabel(self.convert_model_dialog, text="Converting Diffusers to CKPT. Please wait...") label.pack() self.convert_model_dialog.geometry("300x70") self.convert_model_dialog.resizable(False, False) self.convert_model_dialog.grab_set() self.convert_model_dialog.focus_set() self.update() converters.Convert_Diffusers_to_SD(model_path, output_path) self.convert_model_dialog.destroy() #messagebox.showinfo("Conversion Complete", "Conversion Complete") def convert_to_safetensors(self,model_path=None, output_path=None,name=None): if model_path is None: model_path = fd.askdirectory(initialdir=self.output_path_entry.get(), title="Select Diffusers Model Directory") #check if model path has vae,unet,text_encoder,tokenizer,scheduler and args.json and model_index.json if output_path is None: output_path = fd.asksaveasfilename(initialdir=os.getcwd(),title = "Save Safetensors file",filetypes = (("safetensors files","*.safetensors"),("all files","*.*"))) if not os.path.exists(model_path) and not os.path.exists(os.path.join(model_path,"vae")) and not os.path.exists(os.path.join(model_path,"unet")) and not os.path.exists(os.path.join(model_path,"text_encoder")) and not os.path.exists(os.path.join(model_path,"tokenizer")) and not os.path.exists(os.path.join(model_path,"scheduler")) and not os.path.exists(os.path.join(model_path,"args.json")) and not os.path.exists(os.path.join(model_path,"model_index.json")): messagebox.showerror("Error", "Couldn't find model structure in path") return #check if ckpt in output path if name != None: output_path = os.path.join(output_path,name+".safetensors") if not output_path.endswith(".safetensors") and output_path != "": #add ckpt to output path output_path = output_path + ".safetensors" if not output_path or output_path == "": return self.convert_model_dialog = ctk.CTkToplevel(self) self.convert_model_dialog.title("Converting model") #label empty_label = ctk.CTkLabel(self.convert_model_dialog, text="") empty_label.pack() label = ctk.CTkLabel(self.convert_model_dialog, text="Converting Diffusers to CKPT. Please wait...") label.pack() self.convert_model_dialog.geometry("300x70") self.convert_model_dialog.resizable(False, False) self.convert_model_dialog.grab_set() self.convert_model_dialog.focus_set() self.update() converters.Convert_Diffusers_to_SD(model_path, output_path) self.convert_model_dialog.destroy() #messagebox.showinfo("Conversion Complete", "Conversion Complete") #function to act as a callback when the user adds a new concept data path to generate a new preview image def update_preview_image(self, event): #check if entry has changed indexOfEntry = 0 for concept_entry in self.concept_entries: if event.widget in concept_entry: indexOfEntry = self.concept_entries.index(concept_entry) #stop the loop break #get the path from the entry path = event.widget.get() canvas = self.preview_images[indexOfEntry][0] image_container = self.preview_images[indexOfEntry][1] icon = 'resources/stableTuner_icon.png' #create a photoimage object of the image in the path icon = Image.open(icon) #resize the image image = icon.resize((150, 150), Image.Resampling.LANCZOS) if path != "": if os.path.exists(path): files = os.listdir(path) for i in range(4): #get an image from the path import random #filter files for images files = [f for f in files if f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")] if len(files) != 0: rand = random.choice(files) image_path = os.path.join(path,rand) #remove image_path from files if len(files) > 4: files.remove(rand) #files.pop(image_path) #open the image #print(image_path) image_to_add = Image.open(image_path) #resize the image to 38x38 #resize to 150x150 closest to the original aspect ratio image_to_add.thumbnail((150, 150), Image.Resampling.LANCZOS) #decide where to put the image if i == 0: #top left image.paste(image_to_add, (0, 0)) elif i == 1: #top right image.paste(image_to_add, (76, 0)) elif i == 2: #bottom left image.paste(image_to_add, (0, 76)) elif i == 3: #bottom right image.paste(image_to_add, (76, 76)) #convert the image to a photoimage #image.show() newImage=ctk.CTkImage(image) self.preview_images[indexOfEntry][2] = newImage canvas.itemconfig(image_container, image=newImage) def remove_new_concept(self): #get the last concept widget if len(self.concept_widgets) > 0: concept_widget = self.concept_widgets[-1] #remove it from the list self.concept_widgets.remove(concept_widget) #destroy the widget concept_widget.destroy() #repack the widgets #self.repack_concepts() def add_new_concept(self,concept=None): #create a new concept #for concept in self.concept_widgets check if concept was deleted #if it was, remove it from the list row=0 column=len(self.concept_widgets) if len(self.concept_widgets) > 6: row=1 concept_widget = ConceptWidget(self.data_frame_concepts_subframe, concept,width=100,height=100) width=100 height=100 column=len(self.concept_widgets)-7 if len(self.concept_widgets) > 13: row=2 concept_widget = ConceptWidget(self.data_frame_concepts_subframe, concept,width=100,height=100) height=100 width=100 column=len(self.concept_widgets)-14 if len(self.concept_widgets) > 20: messagebox.showerror("Error", "You can only have 21 concepts") return else: concept_widget = ConceptWidget(self.data_frame_concepts_subframe, concept,width=100,height=100) #print(row) concept_widget.grid(row=row, column=column, sticky="e",padx=13, pady=10) self.concept_widgets.append(concept_widget) self.update() #print(len(self.concept_widgets)) #if row == 2: # for concept in self.concept_widgets: # concept.resize_widget(width, height) def add_concept(self, inst_prompt_val=None, class_prompt_val=None, inst_data_path_val=None, class_data_path_val=None, do_not_balance_val=False): #create a title for the new concept concept_title = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Concept " + str(len(self.concept_labels)+1), font=("Helvetica", 10, "bold"), bg_color='#333333') concept_title.grid(row=3 + (len(self.concept_labels)*6), column=0, sticky="nsew") #create instance prompt label ins_prompt_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Token/Prompt", bg_color='#333333') ins_prompt_label_ttp = CreateToolTip(ins_prompt_label, "The token for the concept, will be ignored if use image names as captions is checked.") ins_prompt_label.grid(row=4 + (len(self.concept_labels)*6), column=0, sticky="nsew") #create instance prompt entry ins_prompt_entry = ctk.CTkEntry(self.data_frame_concepts_subframe, bg_color='#333333') ins_prompt_entry.grid(row=4 + (len(self.concept_labels)*6), column=1, sticky="nsew") if inst_prompt_val != None: ins_prompt_entry.insert(0, inst_prompt_val) #create class prompt label class_prompt_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Class Prompt", bg_color='#333333') class_prompt_label_ttp = CreateToolTip(class_prompt_label, "The prompt will be used to generate class images and train the class images if added to dataset") class_prompt_label.grid(row=5 + (len(self.concept_labels)*6), column=0, sticky="nsew") #create class prompt entry class_prompt_entry = ctk.CTkEntry(self.data_frame_concepts_subframe,width=50, bg_color='#333333') class_prompt_entry.grid(row=5 + (len(self.concept_labels)*6), column=1, sticky="nsew") if class_prompt_val != None: class_prompt_entry.insert(0, class_prompt_val) #create instance data path label ins_data_path_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Training Data Directory", bg_color='#333333') ins_data_path_label_ttp = CreateToolTip(ins_data_path_label, "The path to the folder containing the concept's images.") ins_data_path_label.grid(row=6 + (len(self.concept_labels)*6), column=0, sticky="nsew") #create instance data path entry ins_data_path_entry = ctk.CTkEntry(self.data_frame_concepts_subframe,width=50, bg_color='#333333') ins_data_path_entry.bind("", self.update_preview_image) #bind to insert ins_data_path_entry.grid(row=6 + (len(self.concept_labels)*6), column=1, sticky="nsew") if inst_data_path_val != None: #focus on the entry ins_data_path_entry.insert(0, inst_data_path_val) ins_data_path_entry.focus_set() #focus on main window self.focus_set() #add a button to open a file dialog to select the instance data path ins_data_path_file_dialog_button = ctk.CTkButton(self.data_frame_concepts_subframe, text="...", command=lambda: self.open_file_dialog(ins_data_path_entry), bg_color='#333333') ins_data_path_file_dialog_button.grid(row=6 + (len(self.concept_labels)*6), column=2, sticky="nsew") #create class data path label class_data_path_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Class Data Directory", bg_color='#333333') class_data_path_label_ttp = CreateToolTip(class_data_path_label, "The path to the folder containing the concept's class images.") class_data_path_label.grid(row=7 + (len(self.concept_labels)*6), column=0, sticky="nsew") #add a button to open a file dialog to select the class data path class_data_path_file_dialog_button = ctk.CTkButton(self.data_frame_concepts_subframe, text="...", command=lambda: self.open_file_dialog(class_data_path_entry), bg_color='#333333') class_data_path_file_dialog_button.grid(row=7 + (len(self.concept_labels)*6), column=2, sticky="nsew") #create class data path entry class_data_path_entry = ctk.CTkEntry(self.data_frame_concepts_subframe, bg_color='#333333') class_data_path_entry.grid(row=7 + (len(self.concept_labels)*6), column=1, sticky="nsew") if class_data_path_val != None: class_data_path_entry.insert(0, class_data_path_val) #add a checkbox to do not balance dataset do_not_balance_dataset_var = tk.IntVar() #label for checkbox do_not_balance_dataset_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Do not balance dataset", bg_color='#333333') do_not_balance_dataset_label_ttp = CreateToolTip(do_not_balance_dataset_label, "If checked, the dataset will not be balanced. this settings overrides the global auto balance setting, if there's a concept you'd like to train without balance while the others will.") do_not_balance_dataset_label.grid(row=8 + (len(self.concept_labels)*6), column=0, sticky="nsew") do_not_balance_dataset_checkbox = ctk.CTkSwitch(self.data_frame_concepts_subframe, variable=do_not_balance_dataset_var, bg_color='#333333') do_not_balance_dataset_checkbox.grid(row=8 + (len(self.concept_labels)*6), column=1, sticky="nsew") do_not_balance_dataset_var.set(0) #create a preview of the images in the path on the right side of the concept #create a frame to hold the images #empty column to separate the images from the rest of the concept #sep = ctk.CTkLabel(self.data_frame_concepts_subframe,padx=3, text="").grid(row=4 + (len(self.concept_labels)*6), column=3, sticky="nsew", bg_color='#333333') image_preview_frame = ctk.CTkFrame(self.data_frame_concepts_subframe) image_preview_frame.grid(row=4 + (len(self.concept_labels)*6), column=4, rowspan=4, sticky="ne") #create a label for the images #image_preview_label = ctk.CTkLabel(image_preview_frame, text="Image Preview") #image_preview_label.grid(row=0, column=0, sticky="nsew") #create a canvas to hold the images image_preview_canvas = tk.Canvas(image_preview_frame) #flat border image_preview_canvas.configure(border=0, relief='flat', highlightthickness=0) #canvas size is 100x100 image_preview_canvas.configure(width=150, height=150, bg='#333333') image_preview_canvas.grid(row=0, column=0, sticky="nsew") #debug test, image preview just white #if there's a path in the entry, show the images in the path #grab stableTuner_icon.png from the resources folder icon = 'resources/stableTuner_icon.png' #create a photoimage object of the image in the path icon = Image.open(icon) #resize the image image = icon.resize((150, 150), Image.Resampling.LANCZOS) image_preview = ImageTk.PhotoImage(image) if inst_data_path_val != None: if os.path.exists(inst_data_path_val): del image_preview #get 4 images from the path #create a host image image = Image.new("RGB", (150, 150), "white") files = os.listdir(inst_data_path_val) if len(files) > 0: for i in range(4): #get an image from the path import random #filter files for images files = [f for f in files if f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")] rand = random.choice(files) image_path = os.path.join(inst_data_path_val,rand) #remove image_path from files if len(files) > 4: files.remove(rand) #files.pop(image_path) #open the image #print(image_path) image_to_add = Image.open(image_path) #resize the image to 38x38 #resize to 150x150 closest to the original aspect ratio image_to_add.thumbnail((150, 150), Image.Resampling.LANCZOS) #decide where to put the image if i == 0: #top left image.paste(image_to_add, (0, 0)) elif i == 1: #top right image.paste(image_to_add, (76, 0)) elif i == 2: #bottom left image.paste(image_to_add, (0, 76)) elif i == 3: #bottom right image.paste(image_to_add, (76, 76)) #convert the image to a photoimage #image.show() image_preview = ctk.CTkImage(image) #add the image to the canvas image_container = image_preview_canvas.create_image(0, 0, anchor="nw", image=image_preview) self.preview_images.append([image_preview_canvas,image_container,image_preview]) image_preview_frame.update() if do_not_balance_val != False: do_not_balance_dataset_var.set(1) #combine all the entries into a list concept_entries = [ins_prompt_entry, class_prompt_entry, ins_data_path_entry, class_data_path_entry,do_not_balance_dataset_var,do_not_balance_dataset_checkbox] for i in concept_entries[:4]: i.bind("", self.create_right_click_menu) #add the list to the list of concept entries self.concept_entries.append(concept_entries) #add the title to the list of concept titles self.concept_labels.append([concept_title, ins_prompt_label, class_prompt_label, ins_data_path_label, class_data_path_label,do_not_balance_dataset_label,image_preview_frame]) self.concepts.append({"instance_prompt": ins_prompt_entry, "class_prompt": class_prompt_entry, "instance_data_dir": ins_data_path_entry, "class_data_dir": class_data_path_entry,'do_not_balance': do_not_balance_dataset_var}) self.concept_file_dialog_buttons.append([ins_data_path_file_dialog_button, class_data_path_file_dialog_button]) #self.canvas.configure(scrollregion=self.canvas.bbox("all")) def get_sd_version(self,file_path): import torch if 'ckpt' in file_path: checkpoint = torch.load(file_path, map_location="cpu") else: from safetensors.torch import load_file checkpoint = load_file(file_path) #checkpoint = torch.load(file_path) answer = messagebox.askyesno("V-Model?", "Is this model using V-Parameterization? (based on SD2.x 768 model)") if answer == True: prediction = "vprediction" else: prediction = "epsilon" key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if "state_dict" in checkpoint.keys(): checkpoint = checkpoint["state_dict"] if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024: version = "v2" else: version = "v1" del checkpoint return version, prediction def choose_model(self): """Opens a file dialog and to choose either a model or a model folder.""" #open file dialog and show only ckpt and json files and folders file_path = fd.askopenfilename(filetypes=[("Model", "*.ckpt"), ("Model", "*.json"), ("Model", "*.safetensors")]) #file_path = fd.askopenfilename() model_index.json if file_path == "": return #check if the file is a json file if file_path.endswith("model_index.json"): #check if the file is a model index file #check if folder has folders for: vae, unet, tokenizer, text_encoder model_dir = os.path.dirname(file_path) for folder in self.required_folders: if not os.path.isdir(os.path.join(model_dir, folder)): #show error message messagebox.showerror("Error", "The selected model is missing the {} folder.".format(folder)) return file_path = model_dir #if the file is not a model index file if file_path.endswith(".ckpt") or file_path.endswith(".safetensors"): sd_file = file_path version, prediction = self.get_sd_version(sd_file) #create a directory under the models folder with the name of the ckpt file model_name = os.path.basename(file_path).split(".")[0] #get the path of the script script_path = os.getcwd() #get the path of the models folder models_path = os.path.join(script_path, "models") #if no models_path exists, create it if not os.path.isdir(models_path): os.mkdir(models_path) #create the path of the new model folder model_path = os.path.join(models_path, model_name) #check if the model folder already exists if os.path.isdir(model_path) and os.path.isfile(os.path.join(model_path, "model_index.json")): file_path = model_path else: #create the model folder if os.path.isdir(model_path): shutil.rmtree(model_path) os.mkdir(model_path) #converter #show a dialog to inform the user that the model is being converted self.convert_model_dialog = ctk.CTkToplevel(self) self.convert_model_dialog.title("Converting model") #label empty_label = ctk.CTkLabel(self.convert_model_dialog, text="") empty_label.pack() label = ctk.CTkLabel(self.convert_model_dialog, text="Converting CKPT to Diffusers. Please wait...") label.pack() self.convert_model_dialog.geometry("300x70") self.convert_model_dialog.resizable(False, False) self.convert_model_dialog.grab_set() self.convert_model_dialog.focus_set() self.update() convert = converters.Convert_SD_to_Diffusers(sd_file,model_path,prediction_type=prediction,version=version) self.convert_model_dialog.destroy() file_path = model_path self.input_model_path_entry.delete(0, tk.END) self.input_model_path_entry.insert(0, file_path) def open_file_dialog(self, entry): """Opens a file dialog and sets the entry to the selected file.""" indexOfEntry = None file_path = fd.askdirectory() #get the entry name entry.delete(0, tk.END) entry.insert(0, file_path) #focus on the entry entry.focus_set() #unset the focus on the button #self.master.focus_set() def save_concept_to_json(self,filename=None,preMadeConcepts=None): #dialog box to select the file to save to if filename == None: file = fd.asksaveasfile(mode='w', defaultextension=".json", filetypes=[("JSON", "*.json")]) #check if file has json extension if 'json' not in file.name: file.name = file.name + '.json' else: file = open(filename, 'w') if file != None: if preMadeConcepts == None: concepts = [] for widget in self.concept_widgets: concept = widget.concept concept_dict = {'instance_prompt' : concept.concept_name, 'class_prompt' : concept.concept_class_name, 'instance_data_dir' : concept.concept_path, 'class_data_dir' : concept.concept_class_path,'flip_p' : concept.flip_p, 'do_not_balance' : concept.concept_do_not_balance, 'use_sub_dirs' : concept.process_sub_dirs} concepts.append(concept_dict) if file != None: #write the json to the file json.dump(concepts, file, indent=4) #close the file file.close() else: json.dump(preMadeConcepts, file, indent=4) #close the file file.close() def load_concept_from_json(self): # #dialog concept_json = fd.askopenfilename(title = "Select file",filetypes = (("json files","*.json"),("all files","*.*"))) for i in range(len(self.concept_widgets)): self.remove_new_concept() self.concept_entries = [] self.concept_labels = [] self.concepts = [] with open(concept_json, "r") as f: concept_json = json.load(f) for concept in concept_json: #print(concept) if 'flip_p' not in concept: concept['flip_p'] = '' concept = Concept(concept_name=concept["instance_prompt"], class_name=concept["class_prompt"], concept_path=concept["instance_data_dir"], class_path=concept["class_data_dir"],flip_p=concept['flip_p'],balance_dataset=concept["do_not_balance"], process_sub_dirs=concept["use_sub_dirs"]) self.add_new_concept(concept) #self.canvas.configure(scrollregion=self.canvas.bbox("all")) self.update() return concept_json def remove_concept(self): #remove the last concept if len(self.concept_labels) > 0: for entry in self.concept_entries[-1]: #if the entry is an intvar if isinstance(entry, tk.IntVar): #delete the entry del entry else: entry.destroy() for label in self.concept_labels[-1]: label.destroy() for button in self.concept_file_dialog_buttons[-1]: button.destroy() self.concept_entries.pop() self.concept_labels.pop() self.concepts.pop() self.concept_file_dialog_buttons.pop() self.preview_images.pop() #self.canvas.configure(scrollregion=self.canvas.bbox("all")) def remove_new_concept(self): #remove the last concept #print(self.concept_widgets) if len(self.concept_widgets) > 0: self.concept_widgets[-1].destroy() self.concept_widgets.pop() #self.preview_images.pop() #self.canvas.configure(scrollregion=self.canvas.bbox("all")) def toggle_telegram_settings(self): #print(self.send_telegram_updates_var.get()) if self.send_telegram_updates_var.get() == 1: self.telegram_token_label.configure(state="normal") self.telegram_token_entry.configure(state="normal") self.telegram_chat_id_label.configure(state="normal") self.telegram_chat_id_entry.configure(state="normal") else: self.telegram_token_label.configure(state="disabled") self.telegram_token_entry.configure(state="disabled") self.telegram_chat_id_label.configure(state="disabled") self.telegram_chat_id_entry.configure(state="disabled") def add_controlled_seed_sample(self,value=""): if len(self.controlled_seed_sample_labels) <= 4: self.controlled_seed_sample_labels.append(ctk.CTkLabel(self.sampling_frame_subframe,bg_color='transparent' ,text="Controlled Seed Sample " + str(len(self.controlled_seed_sample_labels)+1))) self.controlled_seed_sample_labels[-1].grid(row=self.controlled_sample_row + len(self.sample_prompts) + len(self.controlled_seed_sample_labels), column=2, padx=10, pady=5,sticky="nwes") #create entry entry = ctk.CTkEntry(self.sampling_frame_subframe,width=250) entry.bind("",self.create_right_click_menu) self.controlled_seed_sample_entries.append(entry) self.controlled_seed_sample_entries[-1].grid(row=self.controlled_sample_row + len(self.sample_prompts) + len(self.controlled_seed_sample_entries), column=3, padx=10, pady=5,sticky="w") if value != "": self.controlled_seed_sample_entries[-1].insert(0, value) self.add_controlled_seed_to_sample.append(value) #self.canvas.configure(scrollregion=self.canvas.bbox("all")) def remove_controlled_seed_sample(self): #get the entry and label to remove if len(self.controlled_seed_sample_labels) > 0: self.controlled_seed_sample_labels[-1].destroy() self.controlled_seed_sample_labels.pop() self.controlled_seed_sample_entries[-1].destroy() self.controlled_seed_sample_entries.pop() self.add_controlled_seed_to_sample.pop() #self.canvas.configure(scrollregion=self.canvas.bbox("all")) def remove_sample_prompt(self): if len(self.sample_prompt_labels) > 0: #remove the last label and entry #get entry value self.sample_prompt_labels[-1].destroy() self.sample_prompt_entries[-1].destroy() #remove the last label and entry from the lists self.sample_prompt_labels.pop() self.sample_prompt_entries.pop() #remove the last value from the list self.sample_prompts.pop() #print(self.sample_prompts) #print(self.sample_prompt_entries) #self.canvas.configure(scrollregion=self.canvas.bbox("all")) for i in self.controlled_seed_buttons: #push to next row i.grid(row=i.grid_info()["row"] - 1, column=i.grid_info()["column"], sticky="nsew") for i in self.controlled_seed_sample_labels: #push to next row i.grid(row=i.grid_info()["row"] - 1, column=i.grid_info()["column"], sticky="nsew") for i in self.controlled_seed_sample_entries: #push to next row i.grid(row=i.grid_info()["row"] - 1, column=i.grid_info()["column"], sticky="nsew") def add_sample_prompt(self,value=""): #add a new label and entry if len(self.sample_prompt_entries) <= 4: self.sample_prompt_labels.append(ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Prompt " + str(len(self.sample_prompt_labels)+1),bg_color='transparent')) self.sample_prompt_labels[-1].grid(row=self.sample_prompt_row + len(self.sample_prompt_labels) - 1, column=2, padx=10, pady=5,sticky="nsew") entry = ctk.CTkEntry(self.sampling_frame_subframe,width=250) entry.bind("", self.create_right_click_menu) self.sample_prompt_entries.append(entry) self.sample_prompt_entries[-1].grid(row=self.sample_prompt_row + len(self.sample_prompt_labels) - 1, column=3, padx=10, pady=5,sticky="nsew") if value != "": self.sample_prompt_entries[-1].insert(0, value) #update the sample prompts list self.sample_prompts.append(value) for i in self.controlled_seed_buttons: #push to next row i.grid(row=i.grid_info()["row"] + 1, column=i.grid_info()["column"], sticky="nsew") for i in self.controlled_seed_sample_labels: #push to next row i.grid(row=i.grid_info()["row"] + 1, column=i.grid_info()["column"], sticky="nsew") for i in self.controlled_seed_sample_entries: #push to next row i.grid(row=i.grid_info()["row"] + 1, column=i.grid_info()["column"], sticky="nsew") #print(self.sample_prompts) #print(self.sample_prompt_entries) #update canvas scroll region #self.canvas.configure(scrollregion=self.canvas.bbox("all")) def update_sample_prompts(self): #update the sample prompts list self.sample_prompts = [] for i in range(len(self.sample_prompt_entries)): self.sample_prompts.append(self.sample_prompt_entries[i].get()) def update_controlled_seed_sample(self): #update the sample prompts list self.add_controlled_seed_to_sample = [] for i in range(len(self.controlled_seed_sample_entries)): self.add_controlled_seed_to_sample.append(self.controlled_seed_sample_entries[i].get()) self.update() def update_concepts(self): #update the concepts list #if the first index is a dict if isinstance(self.concepts, dict): return self.concepts = [] for i in range(len(self.concept_widgets)): concept = self.concept_widgets[i].concept self.concepts.append({'instance_prompt' : concept.concept_name, 'class_prompt' : concept.concept_class_name, 'instance_data_dir' : concept.concept_path, 'class_data_dir' : concept.concept_class_path,'flip_p' : concept.flip_p, 'do_not_balance' : concept.concept_do_not_balance, 'use_sub_dirs' : concept.process_sub_dirs}) def save_config(self, config_file=None): #save the configure file import json #create a dictionary of all the variables #ask the user for a file name if config_file == None: file_name = fd.asksaveasfilename(title = "Select file",filetypes = (("json files","*.json"),("all files","*.*"))) #check if json in file name if ".json" not in file_name: file_name += ".json" else: file_name = config_file configure = {} self.update_controlled_seed_sample() self.update_sample_prompts() self.update_concepts() configure["concepts"] = self.concepts #print(self.concepts) configure["sample_prompts"] = self.sample_prompts configure['add_controlled_seed_to_sample'] = self.add_controlled_seed_to_sample configure["model_path"] = self.input_model_path_entry.get() configure["vae_path"] = self.vae_model_path_entry.get() configure["output_path"] = self.output_path_entry.get() configure["send_telegram_updates"] = self.send_telegram_updates_var.get() configure["telegram_token"] = self.telegram_token_entry.get() configure["telegram_chat_id"] = self.telegram_chat_id_entry.get() configure["resolution"] = self.resolution_var.get() configure["batch_size"] = self.train_batch_size_var.get() configure["train_epocs"] = self.train_epochs_entry.get() configure["mixed_precision"] = self.mixed_precision_var.get() configure["use_8bit_adam"] = self.use_8bit_adam_var.get() configure["use_gradient_checkpointing"] = self.use_gradient_checkpointing_var.get() configure["accumulation_steps"] = self.gradient_accumulation_steps_var.get() configure["learning_rate"] = self.learning_rate_entry.get() configure["warmup_steps"] = self.num_warmup_steps_entry.get() configure["learning_rate_scheduler"] = self.learning_rate_scheduler_var.get() #configure["use_latent_cache"] = self.use_latent_cache_var.get() #configure["save_latent_cache"] = self.save_latent_cache_var.get() configure["regenerate_latent_cache"] = self.regenerate_latent_cache_var.get() configure["train_text_encoder"] = self.train_text_encoder_var.get() configure["with_prior_loss_preservation"] = self.with_prior_loss_preservation_var.get() configure["prior_loss_preservation_weight"] = self.prior_loss_preservation_weight_entry.get() configure["use_image_names_as_captions"] = self.use_image_names_as_captions_var.get() configure["shuffle_captions"] = self.shuffle_captions_var.get() configure["auto_balance_concept_datasets"] = self.auto_balance_dataset_var.get() configure["add_class_images_to_dataset"] = self.add_class_images_to_dataset_var.get() configure["number_of_class_images"] = self.number_of_class_images_entry.get() configure["save_every_n_epochs"] = self.save_every_n_epochs_entry.get() configure["number_of_samples_to_generate"] = self.number_of_samples_to_generate_entry.get() configure["sample_height"] = self.sample_height_entry.get() configure["sample_width"] = self.sample_width_entry.get() configure["sample_random_aspect_ratio"] = self.sample_random_aspect_ratio_var.get() configure['sample_on_training_start'] = self.sample_on_training_start_var.get() configure['concepts'] = self.concepts configure['aspect_ratio_bucketing'] = self.use_aspect_ratio_bucketing_var.get() configure['seed'] = self.seed_entry.get() configure['dataset_repeats'] = self.dataset_repeats_entry.get() configure['limit_text_encoder_training'] = self.limit_text_encoder_entry.get() configure['use_text_files_as_captions'] = self.use_text_files_as_captions_var.get() configure['ckpt_version'] = self.ckpt_sd_version configure['convert_to_ckpt_after_training'] = self.convert_to_ckpt_after_training_var.get() configure['execute_post_conversion'] = self.convert_to_ckpt_after_training_var.get() configure['disable_cudnn_benchmark'] = self.disable_cudnn_benchmark_var.get() configure['sample_step_interval'] = self.sample_step_interval_entry.get() configure['conditional_dropout'] = self.conditional_dropout_entry.get() configure["clip_penultimate"] = self.clip_penultimate_var.get() configure['use_ema'] = self.use_ema_var.get() configure['aspect_ratio_bucketing_mode'] = self.aspect_ratio_bucketing_mode_var.get() configure['dynamic_bucketing_mode'] = self.dynamic_bucketing_mode_var.get() configure['model_variant'] = self.model_variant_var.get() configure['masked_training'] = self.masked_training_var.get() configure['normalize_masked_area_loss'] = self.normalize_masked_area_loss_var.get() configure['unmasked_probability'] = self.unmasked_probability_var.get() configure['max_denoising_strength'] = self.max_denoising_strength_var.get() configure['fallback_mask_prompt'] = self.fallback_mask_prompt_entry.get() configure['attention'] = self.attention_var.get() configure['batch_prompt_sampling'] = int(self.batch_prompt_sampling_optionmenu_var.get()) configure['shuffle_dataset_per_epoch'] = self.shuffle_dataset_per_epoch_var.get() configure['use_offset_noise'] = self.use_offset_noise_var.get() configure['offset_noise_weight'] = self.offset_noise_weight_entry.get() configure['use_gan'] = self.use_gan_var.get() configure['gan_weight'] = self.gan_weight_entry.get() configure['use_lion'] = self.use_lion_var.get() #save the configure file #if the file exists, delete it if os.path.exists(file_name): os.remove(file_name) with open(file_name, "w",encoding='utf-8') as f: json.dump(configure, f, indent=4) f.close() def load_config(self,file_name=None): #load the configure file #ask the user for a file name if file_name == None: file_name = fd.askopenfilename(title = "Select file",filetypes = (("json files","*.json"),("all files","*.*"))) if file_name == "": return #load the configure file with open(file_name, "r",encoding='utf-8') as f: configure = json.load(f) #load concepts try: for i in range(len(self.concept_widgets)): self.remove_new_concept() self.concept_entries = [] self.concept_labels = [] self.concepts = [] for i in range(len(configure["concepts"])): inst_prompt = configure["concepts"][i]["instance_prompt"] class_prompt = configure["concepts"][i]["class_prompt"] inst_data_dir = configure["concepts"][i]["instance_data_dir"] class_data_dir = configure["concepts"][i]["class_data_dir"] if 'flip_p' not in configure["concepts"][i]: print(configure["concepts"][i].keys()) configure["concepts"][i]['flip_p'] = '' flip_p = configure["concepts"][i]["flip_p"] balance_dataset = configure["concepts"][i]["do_not_balance"] process_sub_dirs = configure["concepts"][i]["use_sub_dirs"] concept = Concept(concept_name=inst_prompt, class_name=class_prompt, concept_path=inst_data_dir, class_path=class_data_dir,flip_p=flip_p,balance_dataset=balance_dataset,process_sub_dirs=process_sub_dirs) self.add_new_concept(concept) except Exception as e: print(e) pass #destroy all the current labels and entries for i in range(len(self.sample_prompt_labels)): self.sample_prompt_labels[i].destroy() self.sample_prompt_entries[i].destroy() for i in range(len(self.controlled_seed_sample_labels)): self.controlled_seed_sample_labels[i].destroy() self.controlled_seed_sample_entries[i].destroy() self.sample_prompt_labels = [] self.sample_prompt_entries = [] self.controlled_seed_sample_labels = [] self.controlled_seed_sample_entries = [] #set the variables for i in range(len(configure["sample_prompts"])): self.add_sample_prompt(value=configure["sample_prompts"][i]) for i in range(len(configure['add_controlled_seed_to_sample'])): self.add_controlled_seed_sample(value=configure['add_controlled_seed_to_sample'][i]) self.input_model_path_entry.delete(0, tk.END) self.input_model_path_entry.insert(0, configure["model_path"]) self.vae_model_path_entry.delete(0, tk.END) self.vae_model_path_entry.insert(0, configure["vae_path"]) self.output_path_entry.delete(0, tk.END) self.output_path_entry.insert(0, configure["output_path"]) self.send_telegram_updates_var.set(configure["send_telegram_updates"]) if configure["send_telegram_updates"]: self.telegram_token_entry.configure(state='normal') self.telegram_chat_id_entry.configure(state='normal') self.telegram_token_label.configure(state='normal') self.telegram_chat_id_label.configure(state='normal') self.telegram_token_entry.delete(0, tk.END) self.telegram_token_entry.insert(0, configure["telegram_token"]) self.telegram_chat_id_entry.delete(0, tk.END) self.telegram_chat_id_entry.insert(0, configure["telegram_chat_id"]) self.resolution_var.set(configure["resolution"]) self.train_batch_size_var.set(configure["batch_size"]) self.train_epochs_entry.delete(0, tk.END) self.train_epochs_entry.insert(0, configure["train_epocs"]) self.mixed_precision_var.set(configure["mixed_precision"]) self.use_8bit_adam_var.set(configure["use_8bit_adam"]) self.use_gradient_checkpointing_var.set(configure["use_gradient_checkpointing"]) self.gradient_accumulation_steps_var.set(configure["accumulation_steps"]) self.learning_rate_entry.delete(0, tk.END) self.learning_rate_entry.insert(0, configure["learning_rate"]) self.num_warmup_steps_entry.delete(0, tk.END) self.num_warmup_steps_entry.insert(0, configure["warmup_steps"]) self.learning_rate_scheduler_var.set(configure["learning_rate_scheduler"]) #self.use_latent_cache_var.set(configure["use_latent_cache"]) #self.save_latent_cache_var.set(configure["save_latent_cache"]) self.regenerate_latent_cache_var.set(configure["regenerate_latent_cache"]) self.train_text_encoder_var.set(configure["train_text_encoder"]) self.with_prior_loss_preservation_var.set(configure["with_prior_loss_preservation"]) self.prior_loss_preservation_weight_entry.delete(0, tk.END) self.prior_loss_preservation_weight_entry.insert(0, configure["prior_loss_preservation_weight"]) self.use_image_names_as_captions_var.set(configure["use_image_names_as_captions"]) self.shuffle_captions_var.set(configure["shuffle_captions"]) self.auto_balance_dataset_var.set(configure["auto_balance_concept_datasets"]) self.add_class_images_to_dataset_var.set(configure["add_class_images_to_dataset"]) self.number_of_class_images_entry.delete(0, tk.END) self.number_of_class_images_entry.insert(0, configure["number_of_class_images"]) self.save_every_n_epochs_entry.delete(0, tk.END) self.save_every_n_epochs_entry.insert(0, configure["save_every_n_epochs"]) self.number_of_samples_to_generate_entry.delete(0, tk.END) self.number_of_samples_to_generate_entry.insert(0, configure["number_of_samples_to_generate"]) self.sample_height_entry.delete(0, tk.END) self.sample_height_entry.insert(0, configure["sample_height"]) self.sample_width_entry.delete(0, tk.END) self.sample_width_entry.insert(0, configure["sample_width"]) self.sample_random_aspect_ratio_var.set(configure["sample_random_aspect_ratio"]) self.sample_on_training_start_var.set(configure["sample_on_training_start"]) self.use_aspect_ratio_bucketing_var.set(configure["aspect_ratio_bucketing"]) self.seed_entry.delete(0, tk.END) self.seed_entry.insert(0, configure["seed"]) self.dataset_repeats_entry.delete(0, tk.END) self.dataset_repeats_entry.insert(0, configure["dataset_repeats"]) self.limit_text_encoder_entry.delete(0, tk.END) if configure["limit_text_encoder_training"] != '0': self.limit_text_encoder_entry.insert(0, configure["limit_text_encoder_training"]) self.use_text_files_as_captions_var.set(configure["use_text_files_as_captions"]) self.convert_to_ckpt_after_training_var.set(configure["convert_to_ckpt_after_training"]) if configure["execute_post_conversion"]: self.execute_post_conversion = True self.disable_cudnn_benchmark_var.set(configure["disable_cudnn_benchmark"]) self.sample_step_interval_entry.delete(0, tk.END) self.sample_step_interval_entry.insert(0, configure["sample_step_interval"]) self.conditional_dropout_entry.delete(0, tk.END) self.conditional_dropout_entry.insert(0, configure["conditional_dropout"]) self.clip_penultimate_var.set(configure["clip_penultimate"]) self.use_ema_var.set(configure["use_ema"]) if configure["aspect_ratio_bucketing"]: self.aspect_ratio_bucketing_mode_label.configure(state='normal') self.aspect_ratio_bucketing_mode_option_menu.configure(state='normal') self.dynamic_bucketing_mode_label.configure(state='normal') self.dynamic_bucketing_mode_option_menu.configure(state='normal') else: self.aspect_ratio_bucketing_mode_label.configure(state='disabled') self.aspect_ratio_bucketing_mode_option_menu.configure(state='disabled') self.dynamic_bucketing_mode_label.configure(state='disabled') self.dynamic_bucketing_mode_option_menu.configure(state='disabled') self.model_variant_var.set(configure["model_variant"]) self.masked_training_var.set(configure["masked_training"]) self.normalize_masked_area_loss_var.set(configure["normalize_masked_area_loss"]) self.unmasked_probability_var.set(configure["unmasked_probability"]) self.max_denoising_strength_var.set(configure["max_denoising_strength"]) self.fallback_mask_prompt_entry.delete(0, tk.END) self.fallback_mask_prompt_entry.insert(0, configure["fallback_mask_prompt"]) self.aspect_ratio_bucketing_mode_var.set(configure["aspect_ratio_bucketing_mode"]) self.dynamic_bucketing_mode_var.set(configure["dynamic_bucketing_mode"]) self.attention_var.set(configure["attention"]) self.batch_prompt_sampling_optionmenu_var.set(str(configure['batch_prompt_sampling'])) self.shuffle_dataset_per_epoch_var.set(configure["shuffle_dataset_per_epoch"]) self.use_offset_noise_var.set(configure["use_offset_noise"]) self.offset_noise_weight_entry.delete(0, tk.END) self.offset_noise_weight_entry.insert(0, configure["offset_noise_weight"]) self.use_gan_var.set(configure["use_gan"]) self.gan_weight_entry.delete(0, tk.END) self.gan_weight_entry.insert(0, configure["gan_weight"]) self.use_lion_var.set(configure["use_lion"]) self.update() def process_inputs(self,export=None): #collect and process all the inputs self.update_controlled_seed_sample() self.update_sample_prompts() self.save_concept_to_json(filename='stabletune_concept_list.json') self.update_concepts() for i in range(len(self.sample_prompts)): self.sample_prompts.append(self.sample_prompts[i]) for i in range(len(self.add_controlled_seed_to_sample)): self.add_controlled_seed_to_sample.append(self.add_controlled_seed_to_sample[i]) self.model_path = self.input_model_path_entry.get() self.vae_path = self.vae_model_path_entry.get() self.output_path = self.output_path_entry.get() self.send_telegram_updates = self.send_telegram_updates_var.get() self.telegram_token = self.telegram_token_entry.get() self.telegram_chat_id = self.telegram_chat_id_entry.get() self.resolution = self.resolution_var.get() self.batch_size = self.train_batch_size_var.get() self.train_epocs = self.train_epochs_entry.get() self.mixed_precision = self.mixed_precision_var.get() self.use_8bit_adam = self.use_8bit_adam_var.get() self.use_gradient_checkpointing = self.use_gradient_checkpointing_var.get() self.accumulation_steps = self.gradient_accumulation_steps_var.get() self.learning_rate = self.learning_rate_entry.get() self.warmup_steps = self.num_warmup_steps_entry.get() self.learning_rate_scheduler = self.learning_rate_scheduler_var.get() #self.use_latent_cache = self.use_latent_cache_var.get() #self.save_latent_cache = self.save_latent_cache_var.get() self.regenerate_latent_cache = self.regenerate_latent_cache_var.get() self.train_text_encoder = self.train_text_encoder_var.get() self.with_prior_loss_preservation = self.with_prior_loss_preservation_var.get() self.prior_loss_preservation_weight = self.prior_loss_preservation_weight_entry.get() self.use_image_names_as_captions = self.use_image_names_as_captions_var.get() self.shuffle_captions = self.shuffle_captions_var.get() self.auto_balance_concept_datasets = self.auto_balance_dataset_var.get() self.add_class_images_to_dataset = self.add_class_images_to_dataset_var.get() self.number_of_class_images = self.number_of_class_images_entry.get() self.save_every_n_epochs = self.save_every_n_epochs_entry.get() self.number_of_samples_to_generate = self.number_of_samples_to_generate_entry.get() self.sample_height = self.sample_height_entry.get() self.sample_width = self.sample_width_entry.get() self.sample_random_aspect_ratio = self.sample_random_aspect_ratio_var.get() self.sample_on_training_start = self.sample_on_training_start_var.get() self.concept_list_json_path = 'stabletune_concept_list.json' self.use_aspect_ratio_bucketing = self.use_aspect_ratio_bucketing_var.get() self.seed_number = self.seed_entry.get() self.dataset_repeats = self.dataset_repeats_entry.get() self.limit_text_encoder = self.limit_text_encoder_entry.get() self.use_text_files_as_captions = self.use_text_files_as_captions_var.get() self.convert_to_ckpt_after_training = self.convert_to_ckpt_after_training_var.get() self.disable_cudnn_benchmark = self.disable_cudnn_benchmark_var.get() self.sample_step_interval = self.sample_step_interval_entry.get() self.cloud_mode = self.cloud_mode_var.get() self.conditional_dropout = self.conditional_dropout_entry.get() self.clip_penultimate = self.clip_penultimate_var.get() self.use_ema = self.use_ema_var.get() self.aspect_ratio_bucketing_mode = self.aspect_ratio_bucketing_mode_var.get() self.dynamic_bucketing_mode = self.dynamic_bucketing_mode_var.get() self.model_variant = self.model_variant_var.get() self.masked_training = self.masked_training_var.get() self.normalize_masked_area_loss = self.normalize_masked_area_loss_var.get() self.unmasked_probability = self.unmasked_probability_var.get() self.max_denoising_strength = self.max_denoising_strength_var.get() self.fallback_mask_prompt = self.fallback_mask_prompt_entry.get() self.attention = self.attention_var.get() self.batch_prompt_sampling = int(self.batch_prompt_sampling_optionmenu_var.get()) self.shuffle_dataset_per_epoch = self.shuffle_dataset_per_epoch_var.get() self.use_offset_noise = self.use_offset_noise_var.get() self.offset_noise_weight = self.offset_noise_weight_entry.get() self.use_gan = self.use_gan_var.get() self.gan_weight = self.gan_weight_entry.get() self.use_lion = self.use_lion_var.get() mode = 'normal' if self.cloud_mode == False and export == None: #check if output path exists if os.path.exists(self.output_path) == True: #check if output path is empty if len(os.listdir(self.output_path)) > 0: #show a messagebox asking if the user wants to overwrite the output path overwrite = messagebox.askyesno("Overwrite Output Path", "The output path is not empty. Do you want to overwrite it?") if overwrite == False: return else: #delete the contents of the output path but the logs or 0 directory for file in os.listdir(self.output_path): if file != 'logs' and file != '0': if os.path.isdir(self.output_path + '/' + file) == True: shutil.rmtree(self.output_path + '/' + file) else: os.remove(self.output_path + '/' + file) if self.cloud_mode == True or export == 'LinuxCMD': if export == 'LinuxCMD': mode = 'LinuxCMD' export='Linux' #create a sessionName for the cloud based on the output path name and the time #format time and date to %month%day%hour%minute now = datetime.now() dt_string = now.strftime("%m-%d-%H-%M") self.export_name = self.output_path.split('/')[-1].split('\\')[-1] + '_' + dt_string self.packageForCloud() if int(self.train_epocs) == 0 or self.train_epocs == '': messagebox.showerror("Error", "Number of training epochs must be greater than 0") return #open stabletune_concept_list.json if os.path.exists('stabletune_last_run.json'): try: with open('stabletune_last_run.json') as f: self.last_run = json.load(f) if self.regenerate_latent_cache == False: if self.last_run["concepts"] == self.concepts: #check if resolution is the same try: #try because I keep adding stuff to the json file and it may error out for peeps if self.last_run["resolution"] != self.resolution or self.use_text_files_as_captions != self.last_run['use_text_files_as_captions'] or self.last_run['dataset_repeats'] != self.dataset_repeats or self.last_run["batch_size"] != self.batch_size or self.last_run["train_text_encoder"] != self.train_text_encoder or self.last_run["use_image_names_as_captions"] != self.use_image_names_as_captions or self.last_run["shuffle_captions"] != self.shuffle_captions or self.last_run["auto_balance_concept_datasets"] != self.auto_balance_concept_datasets or self.last_run["add_class_images_to_dataset"] != self.add_class_images_to_dataset or self.last_run["number_of_class_images"] != self.number_of_class_images or self.last_run["aspect_ratio_bucketing"] != self.use_aspect_ratio_bucketing or self.last_run["masked_training"] != self.masked_training: self.regenerate_latent_cache = True #show message messagebox.showinfo("StableTuner", "Configuration changed, regenerating latent cache") except: print("Error trying to see if regenerating latent cache is needed, this means it probably needs to be regenerated and ST was updated recently.") pass else: messagebox.showinfo("StableTuner", "Configuration changed, regenerating latent cache") self.regenerate_latent_cache = True else: messagebox.showinfo("StableTuner", "Warning: Regenerating latent cache is enabled, will regenerate latent cache") except Exception as e: print(e) print("Error checking last run, regenerating latent cache") self.regenerate_latent_cache = True #create a bat file to run the training if self.mixed_precision == 'fp16' or self.mixed_precision == 'bf16': batBase = f'accelerate "launch" "--mixed_precision={self.mixed_precision}" "scripts/trainer.py"' if export == 'Linux': batBase = f'accelerate launch --mixed_precision="{self.mixed_precision}" scripts/trainer.py' else: if self.mixed_precision == 'fp32': batBase = 'accelerate "launch" "--mixed_precision=no" "scripts/trainer.py"' if export == 'Linux': batBase = f'accelerate launch --mixed_precision="no" scripts/trainer.py' elif self.mixed_precision == 'tf32': batBase = 'accelerate "launch" "--mixed_precision=no" "scripts/trainer.py"' if export == 'Linux': batBase = f'accelerate launch --mixed_precision="no" scripts/trainer.py' if self.shuffle_dataset_per_epoch == True: if export == 'Linux': batBase += ' --shuffle_per_epoch' else: batBase += ' "--shuffle_per_epoch"' if self.batch_prompt_sampling != 0: if export == 'Linux': batBase += f' --sample_from_batch={self.batch_prompt_sampling}' else: batBase += f' "--sample_from_batch={self.batch_prompt_sampling}"' if self.attention == 'xformers': if export == 'Linux': batBase += ' --attention="xformers"' else: batBase += ' "--attention=xformers" ' elif self.attention == 'Flash Attention': if export == 'Linux': batBase += ' --attention="flash_attention"' else: batBase += ' "--attention=flash_attention" ' if self.model_variant == 'Regular': if export == 'Linux': batBase += ' --model_variant="base"' else: batBase += ' "--model_variant=base" ' elif self.model_variant == 'Inpaint': if export == 'Linux': batBase += ' --model_variant="inpainting"' else: batBase += ' "--model_variant=inpainting" ' elif self.model_variant == 'Depth2Img': if export == 'Linux': batBase += ' --model_variant="depth2img"' else: batBase += ' "--model_variant=depth2img" ' if self.masked_training == True: if export == 'Linux': batBase += ' --masked_training ' else: batBase += ' "--masked_training" ' if self.normalize_masked_area_loss == True: if export == 'Linux': batBase += ' --normalize_masked_area_loss ' else: batBase += ' "--normalize_masked_area_loss" ' try: # if unmasked_probability is a percentage calculate what epoch to stop at if '%' in self.unmasked_probability: percent = float(self.unmasked_probability.replace('%', '')) fraction = percent / 100 if export == 'Linux': batBase += f' --unmasked_probability={fraction}' else: batBase += f' "--unmasked_probability={fraction}" ' elif '%' not in self.unmasked_probability and self.unmasked_probability.strip() != '' and self.unmasked_probability != '0': if export == 'Linux': batBase += f' --unmasked_probability={self.unmasked_probability}' else: batBase += f' "--unmasked_probability={self.unmasked_probability}" ' except: pass try: # if max_denoising_strength is a percentage calculate what epoch to stop at if '%' in self.max_denoising_strength: percent = float(self.max_denoising_strength.replace('%', '')) fraction = percent / 100 if export == 'Linux': batBase += f' --max_denoising_strength={fraction}' else: batBase += f' "--max_denoising_strength={fraction}" ' elif '%' not in self.max_denoising_strength and self.max_denoising_strength.strip() != '' and self.max_denoising_strength != '0': if export == 'Linux': batBase += f' --max_denoising_strength={self.max_denoising_strength}' else: batBase += f' "--max_denoising_strength={self.max_denoising_strength}" ' except: pass if self.fallback_mask_prompt != '': if export == 'Linux': batBase += f' --add_mask_prompt="{self.fallback_mask_prompt}"' else: batBase += f' "--add_mask_prompt={self.fallback_mask_prompt}" ' if self.disable_cudnn_benchmark == True: if export == 'Linux': batBase += ' --disable_cudnn_benchmark' else: batBase += ' "--disable_cudnn_benchmark" ' if self.use_text_files_as_captions == True: if export == 'Linux': batBase += ' --use_text_files_as_captions' else: batBase += ' "--use_text_files_as_captions" ' if int(self.sample_step_interval) != 0 or self.sample_step_interval != '' or self.sample_step_interval != ' ': if export == 'Linux': batBase += f' --sample_step_interval={self.sample_step_interval}' else: batBase += f' "--sample_step_interval={self.sample_step_interval}" ' try: #if limit_text_encoder is a percentage calculate what epoch to stop at if '%' in self.limit_text_encoder: percent = float(self.limit_text_encoder.replace('%','')) stop_epoch = int((int(self.train_epocs) * percent) / 100) if export == 'Linux': batBase += f' --stop_text_encoder_training={stop_epoch}' else: batBase += f' "--stop_text_encoder_training={stop_epoch}" ' elif '%' not in self.limit_text_encoder and self.limit_text_encoder.strip() != '' and self.limit_text_encoder != '0': if export == 'Linux': batBase += f' --stop_text_encoder_training={self.limit_text_encoder}' else: batBase += f' "--stop_text_encoder_training={self.limit_text_encoder}" ' except: pass if export=='Linux': batBase += f' --pretrained_model_name_or_path="{self.model_path}" ' batBase += f' --pretrained_vae_name_or_path="{self.vae_path}" ' batBase += f' --output_dir="{self.output_path}" ' batBase += f' --seed={self.seed_number} ' batBase += f' --resolution={self.resolution} ' batBase += f' --train_batch_size={self.batch_size} ' batBase += f' --num_train_epochs={self.train_epocs} ' else: batBase += f' "--pretrained_model_name_or_path={self.model_path}" ' batBase += f' "--pretrained_vae_name_or_path={self.vae_path}" ' batBase += f' "--output_dir={self.output_path}" ' batBase += f' "--seed={self.seed_number}" ' batBase += f' "--resolution={self.resolution}" ' batBase += f' "--train_batch_size={self.batch_size}" ' batBase += f' "--num_train_epochs={self.train_epocs}" ' if self.mixed_precision == 'fp16' or self.mixed_precision == 'bf16' or self.mixed_precision == 'tf32': if export == 'Linux': batBase += f' --mixed_precision="{self.mixed_precision}"' else: batBase += f' "--mixed_precision={self.mixed_precision}" ' if self.use_aspect_ratio_bucketing: if export == 'Linux': batBase += ' --use_bucketing' else: batBase += f' "--use_bucketing" ' if self.aspect_ratio_bucketing_mode == 'Dynamic Fill': com = 'dynamic' if self.aspect_ratio_bucketing_mode == 'Drop Fill': com = 'truncate' if self.aspect_ratio_bucketing_mode == 'Duplicate Fill': com = 'add' if export == 'Linux': batBase += f' --aspect_mode="{com}"' else: batBase += f' "--aspect_mode={com}" ' if self.dynamic_bucketing_mode == 'Duplicate': com = 'add' if self.dynamic_bucketing_mode == 'Drop': com = 'truncate' if export == 'Linux': batBase += f' --aspect_mode_action_preference="{com}"' else: batBase += f' "--aspect_mode_action_preference={com}" ' if self.use_8bit_adam == True: if export == 'Linux': batBase += ' --use_8bit_adam' else: batBase += f' "--use_8bit_adam" ' if self.use_gradient_checkpointing == True: if export == 'Linux': batBase += ' --gradient_checkpointing' else: batBase += f' "--gradient_checkpointing" ' if self.use_lion == True: if export == 'Linux': batBase += ' --use_lion' else: batBase += f' "--use_lion" ' if export == 'Linux': batBase += f' --gradient_accumulation_steps={self.accumulation_steps}' batBase += f' --learning_rate={self.learning_rate}' batBase += f' --lr_warmup_steps={self.warmup_steps}' batBase += f' --lr_scheduler="{self.learning_rate_scheduler}"' else: batBase += f' "--gradient_accumulation_steps={self.accumulation_steps}" ' batBase += f' "--learning_rate={self.learning_rate}" ' batBase += f' "--lr_warmup_steps={self.warmup_steps}" ' batBase += f' "--lr_scheduler={self.learning_rate_scheduler}" ' if self.regenerate_latent_cache == True: if export == 'Linux': batBase += ' --regenerate_latent_cache' else: batBase += f' "--regenerate_latent_cache" ' if self.train_text_encoder == True: if export == 'Linux': batBase += ' --train_text_encoder' else: batBase += f' "--train_text_encoder" ' if self.with_prior_loss_preservation == True and self.use_aspect_ratio_bucketing == False: if export == 'Linux': batBase += ' --with_prior_preservation' batBase += f' --prior_loss_weight={self.prior_loss_preservation_weight}' else: batBase += f' "--with_prior_preservation" ' batBase += f' "--prior_loss_weight={self.prior_loss_preservation_weight}" ' elif self.with_prior_loss_preservation == True and self.use_aspect_ratio_bucketing == True: print('loss preservation isnt supported with aspect ratio bucketing yet, sorry!') if self.use_image_names_as_captions == True: if export == 'Linux': batBase += ' --use_image_names_as_captions' else: batBase += f' "--use_image_names_as_captions" ' if self.shuffle_captions == True: if export == 'Linux': batBase += ' --shuffle_captions' else: batBase += f' "--shuffle_captions" ' if self.use_offset_noise == True: if export == 'Linux': batBase += f' --with_offset_noise' batBase += f' --offset_noise_weight={self.offset_noise_weight}' else: batBase += f' "--with_offset_noise" ' batBase += f' "--offset_noise_weight={self.offset_noise_weight}" ' if self.use_gan == True: if export == 'Linux': batBase += f' --with_gan' batBase += f' --gan_weight={self.gan_weight}' else: batBase += f' "--with_gan" ' batBase += f' "--gan_weight={self.gan_weight}" ' if self.auto_balance_concept_datasets == True: if export == 'Linux': batBase += ' --auto_balance_concept_datasets' else: batBase += f' "--auto_balance_concept_datasets" ' if self.add_class_images_to_dataset == True and self.with_prior_loss_preservation == False: if export == 'Linux': batBase += ' --add_class_images_to_dataset' else: batBase += f' "--add_class_images_to_dataset" ' if export == 'Linux': batBase += f' --concepts_list="{self.concept_list_json_path}"' batBase += f' --num_class_images={self.number_of_class_images}' batBase += f' --save_every_n_epoch={self.save_every_n_epochs}' batBase += f' --n_save_sample={self.number_of_samples_to_generate}' batBase += f' --sample_height={self.sample_height}' batBase += f' --sample_width={self.sample_width}' batBase += f' --dataset_repeats={self.dataset_repeats}' else: batBase += f' "--concepts_list={self.concept_list_json_path}" ' batBase += f' "--num_class_images={self.number_of_class_images}" ' batBase += f' "--save_every_n_epoch={self.save_every_n_epochs}" ' batBase += f' "--n_save_sample={self.number_of_samples_to_generate}" ' batBase += f' "--sample_height={self.sample_height}" ' batBase += f' "--sample_width={self.sample_width}" ' batBase += f' "--dataset_repeats={self.dataset_repeats}" ' if self.sample_random_aspect_ratio == True: if export == 'Linux': batBase += ' --sample_aspect_ratios' else: batBase += f' "--sample_aspect_ratios" ' if self.send_telegram_updates == True: if export == 'Linux': batBase += ' --send_telegram_updates' batBase += f' --telegram_token="{self.telegram_token}"' batBase += f' --telegram_chat_id="{self.telegram_chat_id}"' else: batBase += f' "--send_telegram_updates" ' batBase += f' "--telegram_token={self.telegram_token}" ' batBase += f' "--telegram_chat_id={self.telegram_chat_id}" ' #remove duplicates from self.sample_prompts self.sample_prompts = list(dict.fromkeys(self.sample_prompts)) #remove duplicates from self.add_controlled_seed_to_sample self.add_controlled_seed_to_sample = list(dict.fromkeys(self.add_controlled_seed_to_sample)) for i in range(len(self.sample_prompts)): if export == 'Linux': batBase += f' --add_sample_prompt="{self.sample_prompts[i]}"' else: batBase += f' "--add_sample_prompt={self.sample_prompts[i]}" ' for i in range(len(self.add_controlled_seed_to_sample)): if export == 'Linux': batBase += f' --save_sample_controlled_seed={self.add_controlled_seed_to_sample[i]}' else: batBase += f' "--save_sample_controlled_seed={self.add_controlled_seed_to_sample[i]}" ' if self.sample_on_training_start == True: if export == 'Linux': batBase += ' --sample_on_training_start' else: batBase += f' "--sample_on_training_start" ' if len(self.conditional_dropout) > 0 and self.conditional_dropout != ' ' and self.conditional_dropout != '0': #if % is in the string, remove it if '%' in self.conditional_dropout: self.conditional_dropout = self.conditional_dropout.replace('%', '') #convert to float from percentage string self.conditional_dropout = float(self.conditional_dropout) / 100 else: #check if float try: #check if value is above 1.0 if float(self.conditional_dropout) > 1.0: #divide by 100 self.conditional_dropout = float(self.conditional_dropout) / 100 else: self.conditional_dropout = float(self.conditional_dropout) except: print('Error: Conditional Dropout must be a percent between 0 and 100, or a decimal between 0 and 1.') #print(self.conditional_dropout) #if self.coniditional dropout is a float if isinstance(self.conditional_dropout, float): if export == 'Linux': batBase += f' --conditional_dropout={self.conditional_dropout}' else: batBase += f' "--conditional_dropout={self.conditional_dropout}" ' #save configure if self.clip_penultimate == True: if export == 'Linux': batBase += ' --clip_penultimate' else: batBase += f' "--clip_penultimate" ' if self.use_ema == True: if export == 'Linux': batBase += ' --use_ema' else: batBase += f' "--use_ema" ' self.save_config('stabletune_last_run.json') #check if output folder exists if os.path.exists(self.output_path) == False: #create everything leading up to output folder os.makedirs(self.output_path) #get unique name for config file now = datetime.now() dt_string = now.strftime("%m-%d-%H-%M") #construct name config_log_name = 'stabletuner'+'_'+str(self.resolution)+"_e"+str(self.train_epocs)+"_"+dt_string+'.json' self.save_config(os.path.join(self.output_path, config_log_name)) if export == False: #save the bat file with open("scripts/train.bat", "w", encoding="utf-8") as f: f.write(batBase) #close the window self.destroy() #run the bat file self.quit() train = os.system(r".\scripts\train.bat") #if exit code is 0, then the training was successful if train == 0: app = App() app.mainloop() #if user closed the window or keyboard interrupt, then cancel conversion elif train == 1: os.system("pause") #restart the app elif export == 'win': with open("train.bat", "w", encoding="utf-8") as f: f.write(batBase) #show message messagebox.showinfo("Export", "Exported to train.bat") elif mode == 'LinuxCMD': #copy batBase to clipboard trainer_index = batBase.find('trainer.py')+11 batStart = batBase[:trainer_index] batCommands = batBase[trainer_index:] #split on -- and remove the first element batCommands = batCommands.split('--') batBase = batStart+' \\\n' for command in batCommands[1:]: #add the -- back if command != batCommands[-1]: command = ' --'+command+'\\'+'\n' else: command = ' --'+command batBase += command pyperclip.copy('!'+batBase) shutil.rmtree(self.full_export_path) messagebox.showinfo("Export", "Copied new training command to clipboard.") return elif export == 'Linux' and self.cloud_mode == True: notebook = 'resources/stableTuner_notebook.ipynb' #load the notebook as a dictionary with open(notebook) as f: nb = json.load(f) #get the last cell #find the cell with the source that contains changeMe #format batBase so it won't be one line #find index in batBase of the trainer.py trainer_index = batBase.find('trainer.py')+11 batStart = batBase[:trainer_index] batCommands = batBase[trainer_index:] #split on -- and remove the first element batCommands = batCommands.split('--') batBase = batStart+' \\\n' for command in batCommands[1:]: #add the -- back if command != batCommands[-1]: command = ' --'+command+'\\'+'\n' else: command = ' --'+command batBase += command for i in range(len(nb['cells'])): if 'changeMe' in nb['cells'][i]['source']: code_cell = nb['cells'][i] index = i code_cell['source'] = '!'+batBase #replace the last cell with the new one nb['cells'][index] = code_cell break #save the notebook to the export folder shutil.copy('requirements.txt', self.full_export_path) #zip up everything in export without the folder itself shutil.make_archive('payload', 'zip', self.full_export_path) #move the zip file to the export folder shutil.move('payload.zip', self.full_export_path) #save the notebook to the export folder with open(self.full_export_path+os.sep+'stableTuner_notebook.ipynb', 'w') as f: json.dump(nb, f) #delete everything in the export folder except the zip file and the notebook for file in os.listdir(self.full_export_path): if file.endswith('.zip') or file.endswith('.ipynb'): continue else: #if it's a folder, delete it if os.path.isdir(self.full_export_path+os.sep+file): shutil.rmtree(self.full_export_path+os.sep+file) #if it's a file, delete it else: os.remove(self.full_export_path+os.sep+file) #show message messagebox.showinfo("Success", f"Your cloud\linux payload is ready to go!\nSaved to: {self.full_export_path}\n\nUpload the files and run the notebook to start training.") def restart(instance): instance.destroy() #os.startfile(os.getcwd()+'/scripts/configuration_gui.py') app = App() app.mainloop() #root = ctk.CTk() app = App() app.mainloop()