--- license: creativeml-openrail-m language: - en metrics: - bleu ---

Blazzing Fast Tiny Vision Language Model

A Custom 3B parameter Model. Built by @Manish The model is released for research purposes only, commercial use is not allowed.

## How to use **Install dependencies** ```bash pip install transformers # latest version is ok, but we recommend v4.31.0 pip install -q pillow accelerate einops ``` You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). ```Python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image torch.set_default_device("cuda") #Create model model = AutoModelForCausalLM.from_pretrained( "ManishThota/CustomModel", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ManishThota/CustomModel", trust_remote_code=True) #function to generate the answer def predict(question, image_path): #Set inputs text = f"USER: \n{question}? ASSISTANT:" image = Image.open(image_path) input_ids = tokenizer(text, return_tensors='pt').input_ids.to('cuda') image_tensor = model.image_preprocess(image) #Generate the answer output_ids = model.generate( input_ids, max_new_tokens=25, images=image_tensor, use_cache=True)[0] return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() ```