--- library_name: transformers language: - ar license: mit base_model: openai/whisper-large-v3-turbo tags: - whisper-large-v3-turbo - generated_from_trainer datasets: - darija-c metrics: - bleu model-index: - name: whisper-large-v3-turbo-darija-st results: [] --- # whisper-large-v3-turbo-darija-st This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Darija-C dataset. It achieves the following results on the evaluation set: - Loss: 0.4484 - Bleu: 0.1506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.5028 | 12.5 | 50 | 7.3272 | 0.0 | | 6.3107 | 25.0 | 100 | 5.5738 | 0.0 | | 5.3612 | 37.5 | 150 | 5.0667 | 0.0 | | 4.9035 | 50.0 | 200 | 4.5926 | 0.0 | | 4.3264 | 62.5 | 250 | 3.9335 | 0.0 | | 3.5805 | 75.0 | 300 | 3.1526 | 0.0 | | 2.7738 | 87.5 | 350 | 2.4034 | 0.0045 | | 2.1907 | 100.0 | 400 | 2.0046 | 0.0099 | | 1.8861 | 112.5 | 450 | 1.7903 | 0.0095 | | 1.6974 | 125.0 | 500 | 1.5375 | 0.0072 | | 1.4036 | 137.5 | 550 | 1.2622 | 0.0118 | | 1.1448 | 150.0 | 600 | 1.0376 | 0.0024 | | 0.95 | 162.5 | 650 | 0.8782 | 0.0208 | | 0.8016 | 175.0 | 700 | 0.7391 | 0.0800 | | 0.6971 | 187.5 | 750 | 0.6580 | 0.0836 | | 0.6094 | 200.0 | 800 | 0.5693 | 0.1410 | | 0.5455 | 212.5 | 850 | 0.5185 | 0.1336 | | 0.4971 | 225.0 | 900 | 0.4791 | 0.1210 | | 0.4654 | 237.5 | 950 | 0.4571 | 0.1636 | | 0.4471 | 250.0 | 1000 | 0.4484 | 0.1506 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 2.19.2 - Tokenizers 0.21.0