marqo-fashionCLIP / README.md
Xenova's picture
Xenova HF staff
Add Transformers.js example code
dd14a75 verified
|
raw
history blame
6.08 kB
---
tags:
- clip
- e-commerce
- fashion
- multimodal retrieval
- transformers.js
library_name: open_clip
pipeline_tag: zero-shot-image-classification
license: apache-2.0
language:
- en
metrics:
- precision
- recall
- MRR
---
[![GitHub](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/marqo-ai/marqo-FashionCLIP)
# Marqo-FashionCLIP Model Card
Marqo-FashionCLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products.
The model was fine-tuned from ViT-B-16 (laion2b_s34b_b88k).
**Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP)
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion)
## Usage
### OpenCLIP
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
```python
import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
import torch
from PIL import Image
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
```
### Transformers.js
You can also run the model in JavaScript with the [Transformers.js](https://huggingface.co/docs/transformers.js) library.
First, install it from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
Then, compute embeddings as follows:
```js
import { CLIPTextModelWithProjection, CLIPVisionModelWithProjection, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers';
const model_id = 'Marqo/marqo-fashionCLIP';
// Load tokenizer and text model
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id);
// Load processor and vision model
const processor = await AutoProcessor.from_pretrained(model_id);
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id);
// Run tokenization
const texts = ['a hat', 'a t-shirt', 'shoes'];
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
// Compute text embeddings
const { text_embeds } = await text_model(text_inputs);
// Tensor {
// dims: [ 2, 512 ],
// type: 'float32',
// data: Float32Array(1024) [ ... ],
// size: 1024
// }
// Read image and run processor
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png');
const image_inputs = await processor(image);
// Compute vision embeddings
const { image_embeds } = await vision_model(image_inputs);
// Tensor {
// dims: [ 1, 512 ],
// type: 'float32',
// data: Float32Array(512) [ ... ],
// size: 512
// }
// Compute similarity scores
const normalized_text_embeds = text_embeds.normalize().tolist();
const normalized_image_embeds = image_embeds.normalize().tolist()[0];
const text_probs = softmax(normalized_text_embeds.map((text_embed) =>
100.0 * dot(normalized_image_embeds, text_embed)
));
console.log(text_probs);
// [0.9998498302475922, 0.000119267522939106, 0.000030902229468640687]
```
## Benchmark Results
Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below:
**Text-To-Image (Averaged across 6 datasets)**
| Model | AvgRecall | Recall@1 | Recall@10 | MRR |
|----------------------------|-------------|------------|-------------|-----------|
| Marqo-FashionCLIP | **0.192** | **0.094** | **0.290** | **0.200** |
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
**Category-To-Product (Averaged across 5 datasets)**
| Model | AvgP | P@1 | P@10 | MRR |
|----------------------------|-----------|-----------|-----------|-----------|
| Marqo-FashionCLIP | **0.705** | **0.734** | 0.676 | **0.776** |
| FashionCLIP2.0 | 0.684 | 0.681 | **0.686** | 0.741 |
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
**Sub-Category-To-Product (Averaged across 4 datasets)**
| Model | AvgP | P@1 | P@10 | MRR |
|----------------------------|-----------|-----------|-----------|-----------|
| Marqo-FashionCLIP | **0.707** | **0.747** | **0.667** | **0.772** |
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |