Add Transformers.js example code
Browse files
README.md
CHANGED
@@ -4,6 +4,7 @@ tags:
|
|
4 |
- e-commerce
|
5 |
- fashion
|
6 |
- multimodal retrieval
|
|
|
7 |
library_name: open_clip
|
8 |
pipeline_tag: zero-shot-image-classification
|
9 |
license: apache-2.0
|
@@ -27,6 +28,9 @@ The model was fine-tuned from ViT-B-16 (laion2b_s34b_b88k).
|
|
27 |
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion)
|
28 |
|
29 |
## Usage
|
|
|
|
|
|
|
30 |
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
|
31 |
|
32 |
```python
|
@@ -49,7 +53,69 @@ with torch.no_grad(), torch.cuda.amp.autocast():
|
|
49 |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
50 |
|
51 |
print("Label probs:", text_probs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
```
|
54 |
|
55 |
## Benchmark Results
|
|
|
4 |
- e-commerce
|
5 |
- fashion
|
6 |
- multimodal retrieval
|
7 |
+
- transformers.js
|
8 |
library_name: open_clip
|
9 |
pipeline_tag: zero-shot-image-classification
|
10 |
license: apache-2.0
|
|
|
28 |
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion)
|
29 |
|
30 |
## Usage
|
31 |
+
|
32 |
+
### OpenCLIP
|
33 |
+
|
34 |
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
|
35 |
|
36 |
```python
|
|
|
53 |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
54 |
|
55 |
print("Label probs:", text_probs)
|
56 |
+
```
|
57 |
+
|
58 |
+
### Transformers.js
|
59 |
+
|
60 |
+
You can also run the model in JavaScript with the [Transformers.js](https://huggingface.co/docs/transformers.js) library.
|
61 |
+
|
62 |
+
First, install it from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
63 |
+
|
64 |
+
```bash
|
65 |
+
npm i @huggingface/transformers
|
66 |
+
```
|
67 |
|
68 |
+
Then, compute embeddings as follows:
|
69 |
+
|
70 |
+
```js
|
71 |
+
import { CLIPTextModelWithProjection, CLIPVisionModelWithProjection, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers';
|
72 |
+
|
73 |
+
const model_id = 'Marqo/marqo-fashionCLIP';
|
74 |
+
|
75 |
+
// Load tokenizer and text model
|
76 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
77 |
+
const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id);
|
78 |
+
|
79 |
+
// Load processor and vision model
|
80 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
81 |
+
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id);
|
82 |
+
|
83 |
+
// Run tokenization
|
84 |
+
const texts = ['a hat', 'a t-shirt', 'shoes'];
|
85 |
+
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
|
86 |
+
|
87 |
+
// Compute text embeddings
|
88 |
+
const { text_embeds } = await text_model(text_inputs);
|
89 |
+
// Tensor {
|
90 |
+
// dims: [ 2, 512 ],
|
91 |
+
// type: 'float32',
|
92 |
+
// data: Float32Array(1024) [ ... ],
|
93 |
+
// size: 1024
|
94 |
+
// }
|
95 |
+
|
96 |
+
// Read image and run processor
|
97 |
+
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png');
|
98 |
+
const image_inputs = await processor(image);
|
99 |
+
|
100 |
+
// Compute vision embeddings
|
101 |
+
const { image_embeds } = await vision_model(image_inputs);
|
102 |
+
// Tensor {
|
103 |
+
// dims: [ 1, 512 ],
|
104 |
+
// type: 'float32',
|
105 |
+
// data: Float32Array(512) [ ... ],
|
106 |
+
// size: 512
|
107 |
+
// }
|
108 |
+
|
109 |
+
|
110 |
+
// Compute similarity scores
|
111 |
+
const normalized_text_embeds = text_embeds.normalize().tolist();
|
112 |
+
const normalized_image_embeds = image_embeds.normalize().tolist()[0];
|
113 |
+
|
114 |
+
const text_probs = softmax(normalized_text_embeds.map((text_embed) =>
|
115 |
+
100.0 * dot(normalized_image_embeds, text_embed)
|
116 |
+
));
|
117 |
+
console.log(text_probs);
|
118 |
+
// [0.9998498302475922, 0.000119267522939106, 0.000030902229468640687]
|
119 |
```
|
120 |
|
121 |
## Benchmark Results
|