File size: 6,312 Bytes
5153c25
 
 
33f8516
5153c25
 
 
 
535fb22
33f8516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ed91b
9cb9e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f8516
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- moe
- mergekit
- MoErges
base_model:
- mistralai/Mistral-7B-v0.3
pipeline_tag: text-classification
model-index:
- name: MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 16.97
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 8.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.3
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.23
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.85
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 4.21
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial
      name: Open LLM Leaderboard
---
Model Name: Marsouuu/MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial - Mixture of Experts (MoE)

Description:

This is a cutting-edge Mixture of Experts (MoE) model designed with 24-bit precision, tailored to excel in four key domains: mathematics, coding, storytelling, and general chat. Built with a dynamic mixture of expert layers, this model adapts to different tasks by routing inputs to the most relevant expert network, delivering high-quality outputs efficiently.

Key Features

	•	Mathematics Expert: Equipped with specialized mathematical reasoning capabilities, this model is fine-tuned for solving complex mathematical problems, numerical computations, and providing detailed explanations for mathematical concepts.
	•	Coding Expert: The model has been trained extensively on various programming languages and software development paradigms. It can help generate, debug, and explain code snippets, offering a comprehensive coding support experience.
	•	Storytelling Expert: Designed to assist in creative writing, this expert focuses on generating narratives, constructing dialogues, and offering story-building support for various genres.
	•	General Chat Expert: Capable of engaging in everyday conversations, offering accurate and contextually appropriate responses. This expert is versatile and adaptive to different conversational tones, whether it’s casual chit-chat or formal assistance.

Technical Specifications

	•	Model Architecture: Mixture of Experts (MoE) with a gating mechanism that routes inputs to the most relevant expert networks.
	•	Domains:
	•	Mathematics: Advanced reasoning and problem-solving.
	•	Coding: Programming support across multiple languages.
	•	Storytelling: Creative writing and narrative generation.
	•	General Chat: Versatile dialogue handling for various conversational contexts.
	•	Training Data: The model was trained on diverse datasets that cover each expert domain, ensuring robustness and versatility.
	•	Framework: Developed using [Nom du Framework, par exemple: PyTorch, TensorFlow], optimized for the MoE architecture with gated routing.

Usage

This model can be used for a wide range of applications:

	•	Educational Tools: Assisting with mathematical problems, coding exercises, and creative writing tasks.
	•	Software Development: Providing coding suggestions, code completion, and debugging support.
	•	Creative Writing: Generating stories, dialogues, and narrative content.
	•	Conversational Agents: Implementing chatbots with versatile conversational abilities.

Limitations

	•	The model may occasionally generate responses that are not entirely contextually appropriate, especially in cases requiring highly specialized domain knowledge.
	•	Despite its 24-bit precision, it may not perform well with extremely large datasets or tasks that require higher precision levels.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Marsouuu__MistralBase-4x7B-MoE-ECE-PRYMMAL-Martial)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 6.57|
|IFEval (0-Shot)    |16.97|
|BBH (3-Shot)       | 8.87|
|MATH Lvl 5 (4-Shot)| 0.30|
|GPQA (0-shot)      | 1.23|
|MuSR (0-shot)      | 7.85|
|MMLU-PRO (5-shot)  | 4.21|