base commit
Browse files- README.md +6 -0
- handler.py +67 -0
- requirements.txt +6 -0
README.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- llava-next
|
6 |
+
license: apache-2.0
|
handler.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from tempfile import TemporaryDirectory
|
3 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self, path=""):
|
11 |
+
self.processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
12 |
+
|
13 |
+
|
14 |
+
device = 'cpu' if torch.cuda.is_available() else 'cpu'
|
15 |
+
|
16 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(
|
17 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
18 |
+
torch_dtype=torch.float32 if device == 'cpu' else torch.float16,
|
19 |
+
low_cpu_mem_usage=True
|
20 |
+
)
|
21 |
+
model.to(device)
|
22 |
+
|
23 |
+
self.model = model
|
24 |
+
self.device = device
|
25 |
+
|
26 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
27 |
+
"""
|
28 |
+
data args:
|
29 |
+
text (:obj: `str`)
|
30 |
+
files (:obj: `list`) - List of URLs to images
|
31 |
+
Return:
|
32 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
33 |
+
"""
|
34 |
+
# get inputs
|
35 |
+
prompt = data.pop("prompt", data)
|
36 |
+
# get additional date field0
|
37 |
+
image_url = data.pop("files", None)[-1]['path']
|
38 |
+
|
39 |
+
print(image_url)
|
40 |
+
print(prompt)
|
41 |
+
|
42 |
+
if image_url is None:
|
43 |
+
return "You need to upload an image URL for LLaVA to work."
|
44 |
+
|
45 |
+
# Create a temporary directory
|
46 |
+
with TemporaryDirectory() as tmpdirname:
|
47 |
+
# Download the image
|
48 |
+
response = requests.get(image_url)
|
49 |
+
if response.status_code != 200:
|
50 |
+
return "Failed to download the image."
|
51 |
+
|
52 |
+
# Define the path for the downloaded image
|
53 |
+
image_path = f"{tmpdirname}/image.jpg"
|
54 |
+
with open(image_path, "wb") as f:
|
55 |
+
f.write(response.content)
|
56 |
+
|
57 |
+
# Open the downloaded image
|
58 |
+
with Image.open(image_path).convert("RGB") as image:
|
59 |
+
prompt = f"[INST] <image>\n{prompt} [/INST]"
|
60 |
+
|
61 |
+
inputs = self.processor(prompt, image, return_tensors="pt").to(self.device)
|
62 |
+
|
63 |
+
output = self.model.generate(**inputs, max_new_tokens=100)
|
64 |
+
|
65 |
+
clean = self.processor.decode(output[0], skip_special_tokens=True)
|
66 |
+
|
67 |
+
return clean
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
git+https://github.com/huggingface/transformers.git
|
3 |
+
spaces
|
4 |
+
pillow
|
5 |
+
accelerate
|
6 |
+
requests
|