update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-common_voice-nl-demo
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-common_voice-nl-demo
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3532
|
20 |
+
- Wer: 0.2044
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 8
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 15.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 3.0536 | 1.12 | 500 | 0.5349 | 0.4338 |
|
56 |
+
| 0.2543 | 2.24 | 1000 | 0.3859 | 0.3029 |
|
57 |
+
| 0.1472 | 3.36 | 1500 | 0.3471 | 0.2818 |
|
58 |
+
| 0.1088 | 4.47 | 2000 | 0.3489 | 0.2731 |
|
59 |
+
| 0.0855 | 5.59 | 2500 | 0.3582 | 0.2558 |
|
60 |
+
| 0.0721 | 6.71 | 3000 | 0.3457 | 0.2471 |
|
61 |
+
| 0.0653 | 7.83 | 3500 | 0.3299 | 0.2357 |
|
62 |
+
| 0.0527 | 8.95 | 4000 | 0.3440 | 0.2334 |
|
63 |
+
| 0.0444 | 10.07 | 4500 | 0.3417 | 0.2289 |
|
64 |
+
| 0.0404 | 11.19 | 5000 | 0.3691 | 0.2204 |
|
65 |
+
| 0.0345 | 12.3 | 5500 | 0.3453 | 0.2102 |
|
66 |
+
| 0.0288 | 13.42 | 6000 | 0.3634 | 0.2089 |
|
67 |
+
| 0.027 | 14.54 | 6500 | 0.3532 | 0.2044 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.17.0.dev0
|
73 |
+
- Pytorch 1.10.2+cu102
|
74 |
+
- Datasets 1.18.3
|
75 |
+
- Tokenizers 0.11.0
|