MatsUy commited on
Commit
9e2e765
1 Parent(s): 15e8db7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-common_voice-nl-demo
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-common_voice-nl-demo
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3532
20
+ - Wer: 0.2044
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 15.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 3.0536 | 1.12 | 500 | 0.5349 | 0.4338 |
56
+ | 0.2543 | 2.24 | 1000 | 0.3859 | 0.3029 |
57
+ | 0.1472 | 3.36 | 1500 | 0.3471 | 0.2818 |
58
+ | 0.1088 | 4.47 | 2000 | 0.3489 | 0.2731 |
59
+ | 0.0855 | 5.59 | 2500 | 0.3582 | 0.2558 |
60
+ | 0.0721 | 6.71 | 3000 | 0.3457 | 0.2471 |
61
+ | 0.0653 | 7.83 | 3500 | 0.3299 | 0.2357 |
62
+ | 0.0527 | 8.95 | 4000 | 0.3440 | 0.2334 |
63
+ | 0.0444 | 10.07 | 4500 | 0.3417 | 0.2289 |
64
+ | 0.0404 | 11.19 | 5000 | 0.3691 | 0.2204 |
65
+ | 0.0345 | 12.3 | 5500 | 0.3453 | 0.2102 |
66
+ | 0.0288 | 13.42 | 6000 | 0.3634 | 0.2089 |
67
+ | 0.027 | 14.54 | 6500 | 0.3532 | 0.2044 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.17.0.dev0
73
+ - Pytorch 1.10.2+cu102
74
+ - Datasets 1.18.3
75
+ - Tokenizers 0.11.0