MattStammers
commited on
Commit
•
9f5520f
1
Parent(s):
7df7efe
Initial commit
Browse files- .gitattributes +1 -0
- README.md +35 -1
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1411.21 +/- 388.99
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b8ea5e32b6cc60df4cb640bc369de03437ccafbae2bfc89604cee693b507a83
|
3 |
+
size 129247
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c266a854700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c266a854790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c266a854820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c266a8548b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c266a854940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c266a8549d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c266a854a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c266a854af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c266a854b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c266a854c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c266a854ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c266a854d30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c266a849480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1691222865271846208,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP2ksL6HRNy+pDnuPp+Rmj9KjVe/jy0sP8M8lL7Lxso9iyNhP+ZzQL+JQaG+vPrLPtgpeL8TY+2/m63iPkMhhz7D3CO+MMQawJhJjj2UrHE/ckWvvgn8Ub/D+Lm/FQa5vMnGVz/nzts+TOzXPqM9kL+GfuG8JvsZv6QF1D6nROs+ms5rP9zqL8D2kQk+N23QvyFRrD5YaNU+CIaAv+ykLr/Ob4a/hw/PP4CkBz+76iDADRzZPzM/Z0BWRYc+vtbHP7AZgL+KZy4/cDVAPgQcbT9f3Je/587bPv3BF8CjPZC/uEkMv1yk0T5N174+QEaSP1mXOj42Haw+e4ZOPl6Pn79AfIE/dfcLwIstQj6Y/t++HYbYvwTMCD3YE4E+gkCHPj82VT8/Wzu/viJRP4gqFr5AskW/NRBDvwdxuL87+7E+X9yXv+fO2z5M7Nc+oz2Qv61dOL+gyBU/nUePPtNHSz+zrhu/YN8Qv/hLWL5bIKo9tyO3PnasYT8wrAa/0XL4PdyO+r4V2tI+2fgiP5q3hb5fbK8/z+FyP329zDzPNGc+Ezcyv41m+71ij8U8rD92v1/cl7/nzts+TOzXPvssYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbZiq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGVyPQAAAADzDAHAAAAAAAHMGD0AAAAAW1nePwAAAAAp39S9AAAAANTm3T8AAAAAQW6SvAAAAAAmDP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHx7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMW1M7wAAAAAkRP8vwAAAACHdZE9AAAAADAW6T8AAAAAItUHvgAAAADKXOk/AAAAALDF0z0AAAAADkPovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2qQrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDVwkS9AAAAAL2N478AAAAAoDnrvQAAAABwPfg/AAAAALQuyL0AAAAAUPr1PwAAAADcJR+9AAAAAMmf3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXKi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWgEEPgAAAADGa+e/AAAAAD6tjToAAAAAJOfwPwAAAADDuhG8AAAAAM+Q4z8AAAAAvoWivQAAAABUNO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIY4VKZlWfeMAWyUTegDjAF0lEdAqVQBUzbeuXV9lChoBkdAl6JRC+lCTmgHTegDaAhHQKlXv3JxNqR1fZQoaAZHQJcdOW/rSmZoB03oA2gIR0CpWhus90RwdX2UKGgGR0CVNwe8wpOOaAdN6ANoCEdAqV1G5avA5HV9lChoBkdAlLDdI5HVgGgHTegDaAhHQKlhojUutfZ1fZQoaAZHQJRIfYwqRU5oB03oA2gIR0CpZYTq0MPSdX2UKGgGR0CSaT74SHuaaAdN6ANoCEdAqWfsSRKYiXV9lChoBkdAlbkDbWVeKWgHTegDaAhHQKlrF5IpYtB1fZQoaAZHQJYHU3GXHBFoB03oA2gIR0Cpb5TyjHn2dX2UKGgGR0CWYpYG+sYEaAdN6ANoCEdAqXNbncL0BnV9lChoBkdAl6pxg7YChmgHTegDaAhHQKl1sgKWszV1fZQoaAZHQJbtPzpX6qNoB03oA2gIR0CpeN05MlC1dX2UKGgGR0CWHmPeHi3oaAdN6ANoCEdAqX06k2xY73V9lChoBkdAljxmX5WRzWgHTegDaAhHQKmBCrnTy8V1fZQoaAZHQJUNimygPEtoB03oA2gIR0Cpg1feLvTgdX2UKGgGR0CYa78JD3M7aAdN6ANoCEdAqYZ0GeMAFXV9lChoBkdAl9xOVX3g1mgHTegDaAhHQKmK0Mhouf51fZQoaAZHQJZwq9vjwQVoB03oA2gIR0Cpjq6bvw3HdX2UKGgGR0CUr0TCcf/4aAdN6ANoCEdAqZEE4DLbH3V9lChoBkdAlanr1AZ88mgHTegDaAhHQKmUKW9DhLp1fZQoaAZHQJVH1EmY0EZoB03oA2gIR0CpmHwCCBf8dX2UKGgGR0CW0xSMLncMaAdN6ANoCEdAqZwnhKlHjXV9lChoBkdAlVda5TZQHmgHTegDaAhHQKmehPJq7Ad1fZQoaAZHQJW+Z/G2kSFoB03oA2gIR0CpobAj6eoUdX2UKGgGR0CVYsllK9PDaAdN6ANoCEdAqaYOeSSvDHV9lChoBkdAl3MqV6eGwmgHTegDaAhHQKmpu4m1IAh1fZQoaAZHQJX5Sj59E1FoB03oA2gIR0CprA24mTkidX2UKGgGR0CRZmK8tf5UaAdN6ANoCEdAqa8lI3BHkXV9lChoBkdAl0SU1yeZomgHTegDaAhHQKmzdhP0qYt1fZQoaAZHQJswPV2A5JdoB03oA2gIR0CptzEjX4CZdX2UKGgGR0CaCAPZ7HAAaAdN6ANoCEdAqbmPMhX8wnV9lChoBkdAmakPb48EFGgHTegDaAhHQKm8oUNayKN1fZQoaAZHQJX7tkOI68xoB03oA2gIR0CpwOoJzDGcdX2UKGgGR0CaVBgBcRlIaAdN6ANoCEdAqcSRTXJ5mnV9lChoBkdAlxJIt+TePGgHTegDaAhHQKnG4iB5HEx1fZQoaAZHQJiyRtix3V1oB03oA2gIR0Cpyfa6J66bdX2UKGgGR0CYKatr9EThaAdN6ANoCEdAqc5NRYRuj3V9lChoBkdAlAu59Vmz0GgHTegDaAhHQKnR/bwjMV11fZQoaAZHQJlN65iExqRoB03oA2gIR0Cp1E0W2w3YdX2UKGgGR0CXSf1Iy0rtaAdN6ANoCEdAqddeMMqjJ3V9lChoBkdAmdzG7SRbKWgHTegDaAhHQKnbnDxb0OF1fZQoaAZHQJkvCn62v0RoB03oA2gIR0Cp3zgeaKDTdX2UKGgGR0CZI5B/ZuhsaAdN6ANoCEdAqeGHbdrO7nV9lChoBkdAlyx8OTaCc2gHTegDaAhHQKnkmAiml691fZQoaAZHQJhr1A+pwS9oB03oA2gIR0Cp6PXkYGdJdX2UKGgGR0CZBkx/ustDaAdN6ANoCEdAqeyimKqGUXV9lChoBkdAnLkWI0qH5GgHTegDaAhHQKnu83lS0jV1fZQoaAZHQJsAPY9Pk7xoB03oA2gIR0Cp8gDm8ujAdX2UKGgGR0CcVNg7YChfaAdN6ANoCEdAqfZGtwJgLXV9lChoBkdAnB9tKZlWfmgHTegDaAhHQKn5433Hq/x1fZQoaAZHQJr9VjWkJrtoB03oA2gIR0Cp/DlAu7HydX2UKGgGR0CbIfpKjBVNaAdN6ANoCEdAqf9Wac7Qs3V9lChoBkdAmcUmcWj46GgHTegDaAhHQKoDo8mrsB11fZQoaAZHQJtsyv/zasZoB03oA2gIR0CqB0Oq3mV8dX2UKGgGR0CZSEiB5HEuaAdN6ANoCEdAqgmQCKaXr3V9lChoBkdAmWbk2Hck+2gHTegDaAhHQKoMpZOBUaR1fZQoaAZHQJrPanBLwnZoB03oA2gIR0CqEOfgR9PUdX2UKGgGR0CZoEctGus+aAdN6ANoCEdAqhSWn889wHV9lChoBkdAli0g62fCh2gHTegDaAhHQKoW6I0IkZ91fZQoaAZHQJtWJihFmWdoB03oA2gIR0CqGgMjeKsNdX2UKGgGR0CcG6E6T4cnaAdN6ANoCEdAqh5W3c580HV9lChoBkdAm9b+IZZSvWgHTegDaAhHQKoiDZcLSeB1fZQoaAZHQJgShGMGX5ZoB03oA2gIR0CqJGFjEvTPdX2UKGgGR0CagFKDCgscaAdN6ANoCEdAqidy++M6zXV9lChoBkdAnMkMGgSOBGgHTegDaAhHQKorqSOBDoh1fZQoaAZHQJfSRIlMRHxoB03oA2gIR0CqL1pTuOS4dX2UKGgGR0CbDL/vfCQ+aAdN6ANoCEdAqjGpDw6QvHV9lChoBkdAmKGBUm2LHmgHTegDaAhHQKo0wqXnhbZ1fZQoaAZHQJyR6zKLbYdoB03oA2gIR0CqOR6i0v4/dX2UKGgGR0CcU969TP0JaAdN6ANoCEdAqjzSzqrzXnV9lChoBkdAmwFvjsD4g2gHTegDaAhHQKo/IDnNgSh1fZQoaAZHQJa1mTeO4oZoB03oA2gIR0CqQi/wy6+WdX2UKGgGR0CaZuPN3W4FaAdN6ANoCEdAqkZ/pfQa73V9lChoBkdAl1hxWtEG7mgHTegDaAhHQKpKLP557gN1fZQoaAZHQJqHfssxwhpoB03oA2gIR0CqTH5M10kodX2UKGgGR0CZiy6xgRbsaAdN6ANoCEdAqk+Q/1QIlnV9lChoBkdAl9rKa9bosGgHTegDaAhHQKpT1BTn7pF1fZQoaAZHQJo6aFL39JloB03oA2gIR0CqV4KjJuEVdX2UKGgGR0CakuTw2ETQaAdN6ANoCEdAqlnUujASF3V9lChoBkdAmttsEvCdjGgHTegDaAhHQKpc7DTBqKx1fZQoaAZHQJgBHg62fChoB03oA2gIR0CqYUJVKf4AdX2UKGgGR0CZ75/9YOlPaAdN6ANoCEdAqmTstsenynV9lChoBkdAmjLBJul41WgHTegDaAhHQKpnP2OhkAh1fZQoaAZHQJNV+zRhMJxoB03oA2gIR0CqalVOj7AMdX2UKGgGR0CW4e8LKFIvaAdN6ANoCEdAqm6dUMoc73V9lChoBkdAmTvb6tT1kGgHTegDaAhHQKpyT1Oj7AN1fZQoaAZHQJcXNe3QUpNoB03oA2gIR0CqdKjdYW+HdX2UKGgGR0CZW55Yoy9FaAdN6ANoCEdAqne9schkiHV9lChoBkdAk6CxgJC0GGgHTegDaAhHQKp8F+9alk91fZQoaAZHQJbD06fapP1oB03oA2gIR0Cqf8DpTuOTdX2UKGgGR0CS93xGlQ/HaAdN6ANoCEdAqoISLdepoHV9lChoBkdAleuR0hePaWgHTegDaAhHQKqFJ/Ot4iZ1fZQoaAZHQJTbvdl/YrdoB03oA2gIR0CqiXMk6cRUdX2UKGgGR0CXS3Ly+YdAaAdN6ANoCEdAqo0fD1oQF3V9lChoBkdAmNOOD3/PxGgHTegDaAhHQKqPdRuTA311fZQoaAZHQJjbDOUt7KJoB03oA2gIR0Cqkon9ehPCdX2UKGgGR0CZutxW1c+raAdN6ANoCEdAqpbej4593XV9lChoBkdAmdNBZIQOF2gHTegDaAhHQKqaexcE/0N1fZQoaAZHQJs05BKL879oB03oA2gIR0CqnMxvWH1wdX2UKGgGR0CYVwsUIsy0aAdN6ANoCEdAqp/dPi1iOXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7ca1c8627cb1cb7883d7cd5bb8a0645fb5f1207f2348aa190f44c7af39e6881
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7758263092aca87012ee47313730fb98b11e276563f02bc8eed9a7b150488692
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c266a854700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c266a854790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c266a854820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c266a8548b0>", "_build": "<function ActorCriticPolicy._build at 0x7c266a854940>", "forward": "<function ActorCriticPolicy.forward at 0x7c266a8549d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c266a854a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c266a854af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c266a854b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c266a854c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c266a854ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c266a854d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c266a849480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691222865271846208, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP2ksL6HRNy+pDnuPp+Rmj9KjVe/jy0sP8M8lL7Lxso9iyNhP+ZzQL+JQaG+vPrLPtgpeL8TY+2/m63iPkMhhz7D3CO+MMQawJhJjj2UrHE/ckWvvgn8Ub/D+Lm/FQa5vMnGVz/nzts+TOzXPqM9kL+GfuG8JvsZv6QF1D6nROs+ms5rP9zqL8D2kQk+N23QvyFRrD5YaNU+CIaAv+ykLr/Ob4a/hw/PP4CkBz+76iDADRzZPzM/Z0BWRYc+vtbHP7AZgL+KZy4/cDVAPgQcbT9f3Je/587bPv3BF8CjPZC/uEkMv1yk0T5N174+QEaSP1mXOj42Haw+e4ZOPl6Pn79AfIE/dfcLwIstQj6Y/t++HYbYvwTMCD3YE4E+gkCHPj82VT8/Wzu/viJRP4gqFr5AskW/NRBDvwdxuL87+7E+X9yXv+fO2z5M7Nc+oz2Qv61dOL+gyBU/nUePPtNHSz+zrhu/YN8Qv/hLWL5bIKo9tyO3PnasYT8wrAa/0XL4PdyO+r4V2tI+2fgiP5q3hb5fbK8/z+FyP329zDzPNGc+Ezcyv41m+71ij8U8rD92v1/cl7/nzts+TOzXPvssYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbZiq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGVyPQAAAADzDAHAAAAAAAHMGD0AAAAAW1nePwAAAAAp39S9AAAAANTm3T8AAAAAQW6SvAAAAAAmDP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHx7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMW1M7wAAAAAkRP8vwAAAACHdZE9AAAAADAW6T8AAAAAItUHvgAAAADKXOk/AAAAALDF0z0AAAAADkPovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2qQrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDVwkS9AAAAAL2N478AAAAAoDnrvQAAAABwPfg/AAAAALQuyL0AAAAAUPr1PwAAAADcJR+9AAAAAMmf3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXKi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWgEEPgAAAADGa+e/AAAAAD6tjToAAAAAJOfwPwAAAADDuhG8AAAAAM+Q4z8AAAAAvoWivQAAAABUNO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIY4VKZlWfeMAWyUTegDjAF0lEdAqVQBUzbeuXV9lChoBkdAl6JRC+lCTmgHTegDaAhHQKlXv3JxNqR1fZQoaAZHQJcdOW/rSmZoB03oA2gIR0CpWhus90RwdX2UKGgGR0CVNwe8wpOOaAdN6ANoCEdAqV1G5avA5HV9lChoBkdAlLDdI5HVgGgHTegDaAhHQKlhojUutfZ1fZQoaAZHQJRIfYwqRU5oB03oA2gIR0CpZYTq0MPSdX2UKGgGR0CSaT74SHuaaAdN6ANoCEdAqWfsSRKYiXV9lChoBkdAlbkDbWVeKWgHTegDaAhHQKlrF5IpYtB1fZQoaAZHQJYHU3GXHBFoB03oA2gIR0Cpb5TyjHn2dX2UKGgGR0CWYpYG+sYEaAdN6ANoCEdAqXNbncL0BnV9lChoBkdAl6pxg7YChmgHTegDaAhHQKl1sgKWszV1fZQoaAZHQJbtPzpX6qNoB03oA2gIR0CpeN05MlC1dX2UKGgGR0CWHmPeHi3oaAdN6ANoCEdAqX06k2xY73V9lChoBkdAljxmX5WRzWgHTegDaAhHQKmBCrnTy8V1fZQoaAZHQJUNimygPEtoB03oA2gIR0Cpg1feLvTgdX2UKGgGR0CYa78JD3M7aAdN6ANoCEdAqYZ0GeMAFXV9lChoBkdAl9xOVX3g1mgHTegDaAhHQKmK0Mhouf51fZQoaAZHQJZwq9vjwQVoB03oA2gIR0Cpjq6bvw3HdX2UKGgGR0CUr0TCcf/4aAdN6ANoCEdAqZEE4DLbH3V9lChoBkdAlanr1AZ88mgHTegDaAhHQKmUKW9DhLp1fZQoaAZHQJVH1EmY0EZoB03oA2gIR0CpmHwCCBf8dX2UKGgGR0CW0xSMLncMaAdN6ANoCEdAqZwnhKlHjXV9lChoBkdAlVda5TZQHmgHTegDaAhHQKmehPJq7Ad1fZQoaAZHQJW+Z/G2kSFoB03oA2gIR0CpobAj6eoUdX2UKGgGR0CVYsllK9PDaAdN6ANoCEdAqaYOeSSvDHV9lChoBkdAl3MqV6eGwmgHTegDaAhHQKmpu4m1IAh1fZQoaAZHQJX5Sj59E1FoB03oA2gIR0CprA24mTkidX2UKGgGR0CRZmK8tf5UaAdN6ANoCEdAqa8lI3BHkXV9lChoBkdAl0SU1yeZomgHTegDaAhHQKmzdhP0qYt1fZQoaAZHQJswPV2A5JdoB03oA2gIR0CptzEjX4CZdX2UKGgGR0CaCAPZ7HAAaAdN6ANoCEdAqbmPMhX8wnV9lChoBkdAmakPb48EFGgHTegDaAhHQKm8oUNayKN1fZQoaAZHQJX7tkOI68xoB03oA2gIR0CpwOoJzDGcdX2UKGgGR0CaVBgBcRlIaAdN6ANoCEdAqcSRTXJ5mnV9lChoBkdAlxJIt+TePGgHTegDaAhHQKnG4iB5HEx1fZQoaAZHQJiyRtix3V1oB03oA2gIR0Cpyfa6J66bdX2UKGgGR0CYKatr9EThaAdN6ANoCEdAqc5NRYRuj3V9lChoBkdAlAu59Vmz0GgHTegDaAhHQKnR/bwjMV11fZQoaAZHQJlN65iExqRoB03oA2gIR0Cp1E0W2w3YdX2UKGgGR0CXSf1Iy0rtaAdN6ANoCEdAqddeMMqjJ3V9lChoBkdAmdzG7SRbKWgHTegDaAhHQKnbnDxb0OF1fZQoaAZHQJkvCn62v0RoB03oA2gIR0Cp3zgeaKDTdX2UKGgGR0CZI5B/ZuhsaAdN6ANoCEdAqeGHbdrO7nV9lChoBkdAlyx8OTaCc2gHTegDaAhHQKnkmAiml691fZQoaAZHQJhr1A+pwS9oB03oA2gIR0Cp6PXkYGdJdX2UKGgGR0CZBkx/ustDaAdN6ANoCEdAqeyimKqGUXV9lChoBkdAnLkWI0qH5GgHTegDaAhHQKnu83lS0jV1fZQoaAZHQJsAPY9Pk7xoB03oA2gIR0Cp8gDm8ujAdX2UKGgGR0CcVNg7YChfaAdN6ANoCEdAqfZGtwJgLXV9lChoBkdAnB9tKZlWfmgHTegDaAhHQKn5433Hq/x1fZQoaAZHQJr9VjWkJrtoB03oA2gIR0Cp/DlAu7HydX2UKGgGR0CbIfpKjBVNaAdN6ANoCEdAqf9Wac7Qs3V9lChoBkdAmcUmcWj46GgHTegDaAhHQKoDo8mrsB11fZQoaAZHQJtsyv/zasZoB03oA2gIR0CqB0Oq3mV8dX2UKGgGR0CZSEiB5HEuaAdN6ANoCEdAqgmQCKaXr3V9lChoBkdAmWbk2Hck+2gHTegDaAhHQKoMpZOBUaR1fZQoaAZHQJrPanBLwnZoB03oA2gIR0CqEOfgR9PUdX2UKGgGR0CZoEctGus+aAdN6ANoCEdAqhSWn889wHV9lChoBkdAli0g62fCh2gHTegDaAhHQKoW6I0IkZ91fZQoaAZHQJtWJihFmWdoB03oA2gIR0CqGgMjeKsNdX2UKGgGR0CcG6E6T4cnaAdN6ANoCEdAqh5W3c580HV9lChoBkdAm9b+IZZSvWgHTegDaAhHQKoiDZcLSeB1fZQoaAZHQJgShGMGX5ZoB03oA2gIR0CqJGFjEvTPdX2UKGgGR0CagFKDCgscaAdN6ANoCEdAqidy++M6zXV9lChoBkdAnMkMGgSOBGgHTegDaAhHQKorqSOBDoh1fZQoaAZHQJfSRIlMRHxoB03oA2gIR0CqL1pTuOS4dX2UKGgGR0CbDL/vfCQ+aAdN6ANoCEdAqjGpDw6QvHV9lChoBkdAmKGBUm2LHmgHTegDaAhHQKo0wqXnhbZ1fZQoaAZHQJyR6zKLbYdoB03oA2gIR0CqOR6i0v4/dX2UKGgGR0CcU969TP0JaAdN6ANoCEdAqjzSzqrzXnV9lChoBkdAmwFvjsD4g2gHTegDaAhHQKo/IDnNgSh1fZQoaAZHQJa1mTeO4oZoB03oA2gIR0CqQi/wy6+WdX2UKGgGR0CaZuPN3W4FaAdN6ANoCEdAqkZ/pfQa73V9lChoBkdAl1hxWtEG7mgHTegDaAhHQKpKLP557gN1fZQoaAZHQJqHfssxwhpoB03oA2gIR0CqTH5M10kodX2UKGgGR0CZiy6xgRbsaAdN6ANoCEdAqk+Q/1QIlnV9lChoBkdAl9rKa9bosGgHTegDaAhHQKpT1BTn7pF1fZQoaAZHQJo6aFL39JloB03oA2gIR0CqV4KjJuEVdX2UKGgGR0CakuTw2ETQaAdN6ANoCEdAqlnUujASF3V9lChoBkdAmttsEvCdjGgHTegDaAhHQKpc7DTBqKx1fZQoaAZHQJgBHg62fChoB03oA2gIR0CqYUJVKf4AdX2UKGgGR0CZ75/9YOlPaAdN6ANoCEdAqmTstsenynV9lChoBkdAmjLBJul41WgHTegDaAhHQKpnP2OhkAh1fZQoaAZHQJNV+zRhMJxoB03oA2gIR0CqalVOj7AMdX2UKGgGR0CW4e8LKFIvaAdN6ANoCEdAqm6dUMoc73V9lChoBkdAmTvb6tT1kGgHTegDaAhHQKpyT1Oj7AN1fZQoaAZHQJcXNe3QUpNoB03oA2gIR0CqdKjdYW+HdX2UKGgGR0CZW55Yoy9FaAdN6ANoCEdAqne9schkiHV9lChoBkdAk6CxgJC0GGgHTegDaAhHQKp8F+9alk91fZQoaAZHQJbD06fapP1oB03oA2gIR0Cqf8DpTuOTdX2UKGgGR0CS93xGlQ/HaAdN6ANoCEdAqoISLdepoHV9lChoBkdAleuR0hePaWgHTegDaAhHQKqFJ/Ot4iZ1fZQoaAZHQJTbvdl/YrdoB03oA2gIR0CqiXMk6cRUdX2UKGgGR0CXS3Ly+YdAaAdN6ANoCEdAqo0fD1oQF3V9lChoBkdAmNOOD3/PxGgHTegDaAhHQKqPdRuTA311fZQoaAZHQJjbDOUt7KJoB03oA2gIR0Cqkon9ehPCdX2UKGgGR0CZutxW1c+raAdN6ANoCEdAqpbej4593XV9lChoBkdAmdNBZIQOF2gHTegDaAhHQKqaexcE/0N1fZQoaAZHQJs05BKL879oB03oA2gIR0CqnMxvWH1wdX2UKGgGR0CYVwsUIsy0aAdN6ANoCEdAqp/dPi1iOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38935b920f6df02798b9bb8a290c90f25822035eb955513ae8c8c91d5a98165d
|
3 |
+
size 1051560
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1411.209081411548, "std_reward": 388.9853203058268, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-05T09:13:31.133215"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0bf288166aa4f4b3c0ba5e099fa08316d96af1edaf7f9bd91f14070cbf6986c
|
3 |
+
size 2176
|