MattStammers commited on
Commit
9f5520f
1 Parent(s): 7df7efe

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1411.21 +/- 388.99
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8ea5e32b6cc60df4cb640bc369de03437ccafbae2bfc89604cee693b507a83
3
+ size 129247
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c266a854700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c266a854790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c266a854820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c266a8548b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c266a854940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c266a8549d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c266a854a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c266a854af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c266a854b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c266a854c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c266a854ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c266a854d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c266a849480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1691222865271846208,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP2ksL6HRNy+pDnuPp+Rmj9KjVe/jy0sP8M8lL7Lxso9iyNhP+ZzQL+JQaG+vPrLPtgpeL8TY+2/m63iPkMhhz7D3CO+MMQawJhJjj2UrHE/ckWvvgn8Ub/D+Lm/FQa5vMnGVz/nzts+TOzXPqM9kL+GfuG8JvsZv6QF1D6nROs+ms5rP9zqL8D2kQk+N23QvyFRrD5YaNU+CIaAv+ykLr/Ob4a/hw/PP4CkBz+76iDADRzZPzM/Z0BWRYc+vtbHP7AZgL+KZy4/cDVAPgQcbT9f3Je/587bPv3BF8CjPZC/uEkMv1yk0T5N174+QEaSP1mXOj42Haw+e4ZOPl6Pn79AfIE/dfcLwIstQj6Y/t++HYbYvwTMCD3YE4E+gkCHPj82VT8/Wzu/viJRP4gqFr5AskW/NRBDvwdxuL87+7E+X9yXv+fO2z5M7Nc+oz2Qv61dOL+gyBU/nUePPtNHSz+zrhu/YN8Qv/hLWL5bIKo9tyO3PnasYT8wrAa/0XL4PdyO+r4V2tI+2fgiP5q3hb5fbK8/z+FyP329zDzPNGc+Ezcyv41m+71ij8U8rD92v1/cl7/nzts+TOzXPvssYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbZiq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGVyPQAAAADzDAHAAAAAAAHMGD0AAAAAW1nePwAAAAAp39S9AAAAANTm3T8AAAAAQW6SvAAAAAAmDP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHx7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMW1M7wAAAAAkRP8vwAAAACHdZE9AAAAADAW6T8AAAAAItUHvgAAAADKXOk/AAAAALDF0z0AAAAADkPovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2qQrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDVwkS9AAAAAL2N478AAAAAoDnrvQAAAABwPfg/AAAAALQuyL0AAAAAUPr1PwAAAADcJR+9AAAAAMmf3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXKi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWgEEPgAAAADGa+e/AAAAAD6tjToAAAAAJOfwPwAAAADDuhG8AAAAAM+Q4z8AAAAAvoWivQAAAABUNO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIY4VKZlWfeMAWyUTegDjAF0lEdAqVQBUzbeuXV9lChoBkdAl6JRC+lCTmgHTegDaAhHQKlXv3JxNqR1fZQoaAZHQJcdOW/rSmZoB03oA2gIR0CpWhus90RwdX2UKGgGR0CVNwe8wpOOaAdN6ANoCEdAqV1G5avA5HV9lChoBkdAlLDdI5HVgGgHTegDaAhHQKlhojUutfZ1fZQoaAZHQJRIfYwqRU5oB03oA2gIR0CpZYTq0MPSdX2UKGgGR0CSaT74SHuaaAdN6ANoCEdAqWfsSRKYiXV9lChoBkdAlbkDbWVeKWgHTegDaAhHQKlrF5IpYtB1fZQoaAZHQJYHU3GXHBFoB03oA2gIR0Cpb5TyjHn2dX2UKGgGR0CWYpYG+sYEaAdN6ANoCEdAqXNbncL0BnV9lChoBkdAl6pxg7YChmgHTegDaAhHQKl1sgKWszV1fZQoaAZHQJbtPzpX6qNoB03oA2gIR0CpeN05MlC1dX2UKGgGR0CWHmPeHi3oaAdN6ANoCEdAqX06k2xY73V9lChoBkdAljxmX5WRzWgHTegDaAhHQKmBCrnTy8V1fZQoaAZHQJUNimygPEtoB03oA2gIR0Cpg1feLvTgdX2UKGgGR0CYa78JD3M7aAdN6ANoCEdAqYZ0GeMAFXV9lChoBkdAl9xOVX3g1mgHTegDaAhHQKmK0Mhouf51fZQoaAZHQJZwq9vjwQVoB03oA2gIR0Cpjq6bvw3HdX2UKGgGR0CUr0TCcf/4aAdN6ANoCEdAqZEE4DLbH3V9lChoBkdAlanr1AZ88mgHTegDaAhHQKmUKW9DhLp1fZQoaAZHQJVH1EmY0EZoB03oA2gIR0CpmHwCCBf8dX2UKGgGR0CW0xSMLncMaAdN6ANoCEdAqZwnhKlHjXV9lChoBkdAlVda5TZQHmgHTegDaAhHQKmehPJq7Ad1fZQoaAZHQJW+Z/G2kSFoB03oA2gIR0CpobAj6eoUdX2UKGgGR0CVYsllK9PDaAdN6ANoCEdAqaYOeSSvDHV9lChoBkdAl3MqV6eGwmgHTegDaAhHQKmpu4m1IAh1fZQoaAZHQJX5Sj59E1FoB03oA2gIR0CprA24mTkidX2UKGgGR0CRZmK8tf5UaAdN6ANoCEdAqa8lI3BHkXV9lChoBkdAl0SU1yeZomgHTegDaAhHQKmzdhP0qYt1fZQoaAZHQJswPV2A5JdoB03oA2gIR0CptzEjX4CZdX2UKGgGR0CaCAPZ7HAAaAdN6ANoCEdAqbmPMhX8wnV9lChoBkdAmakPb48EFGgHTegDaAhHQKm8oUNayKN1fZQoaAZHQJX7tkOI68xoB03oA2gIR0CpwOoJzDGcdX2UKGgGR0CaVBgBcRlIaAdN6ANoCEdAqcSRTXJ5mnV9lChoBkdAlxJIt+TePGgHTegDaAhHQKnG4iB5HEx1fZQoaAZHQJiyRtix3V1oB03oA2gIR0Cpyfa6J66bdX2UKGgGR0CYKatr9EThaAdN6ANoCEdAqc5NRYRuj3V9lChoBkdAlAu59Vmz0GgHTegDaAhHQKnR/bwjMV11fZQoaAZHQJlN65iExqRoB03oA2gIR0Cp1E0W2w3YdX2UKGgGR0CXSf1Iy0rtaAdN6ANoCEdAqddeMMqjJ3V9lChoBkdAmdzG7SRbKWgHTegDaAhHQKnbnDxb0OF1fZQoaAZHQJkvCn62v0RoB03oA2gIR0Cp3zgeaKDTdX2UKGgGR0CZI5B/ZuhsaAdN6ANoCEdAqeGHbdrO7nV9lChoBkdAlyx8OTaCc2gHTegDaAhHQKnkmAiml691fZQoaAZHQJhr1A+pwS9oB03oA2gIR0Cp6PXkYGdJdX2UKGgGR0CZBkx/ustDaAdN6ANoCEdAqeyimKqGUXV9lChoBkdAnLkWI0qH5GgHTegDaAhHQKnu83lS0jV1fZQoaAZHQJsAPY9Pk7xoB03oA2gIR0Cp8gDm8ujAdX2UKGgGR0CcVNg7YChfaAdN6ANoCEdAqfZGtwJgLXV9lChoBkdAnB9tKZlWfmgHTegDaAhHQKn5433Hq/x1fZQoaAZHQJr9VjWkJrtoB03oA2gIR0Cp/DlAu7HydX2UKGgGR0CbIfpKjBVNaAdN6ANoCEdAqf9Wac7Qs3V9lChoBkdAmcUmcWj46GgHTegDaAhHQKoDo8mrsB11fZQoaAZHQJtsyv/zasZoB03oA2gIR0CqB0Oq3mV8dX2UKGgGR0CZSEiB5HEuaAdN6ANoCEdAqgmQCKaXr3V9lChoBkdAmWbk2Hck+2gHTegDaAhHQKoMpZOBUaR1fZQoaAZHQJrPanBLwnZoB03oA2gIR0CqEOfgR9PUdX2UKGgGR0CZoEctGus+aAdN6ANoCEdAqhSWn889wHV9lChoBkdAli0g62fCh2gHTegDaAhHQKoW6I0IkZ91fZQoaAZHQJtWJihFmWdoB03oA2gIR0CqGgMjeKsNdX2UKGgGR0CcG6E6T4cnaAdN6ANoCEdAqh5W3c580HV9lChoBkdAm9b+IZZSvWgHTegDaAhHQKoiDZcLSeB1fZQoaAZHQJgShGMGX5ZoB03oA2gIR0CqJGFjEvTPdX2UKGgGR0CagFKDCgscaAdN6ANoCEdAqidy++M6zXV9lChoBkdAnMkMGgSOBGgHTegDaAhHQKorqSOBDoh1fZQoaAZHQJfSRIlMRHxoB03oA2gIR0CqL1pTuOS4dX2UKGgGR0CbDL/vfCQ+aAdN6ANoCEdAqjGpDw6QvHV9lChoBkdAmKGBUm2LHmgHTegDaAhHQKo0wqXnhbZ1fZQoaAZHQJyR6zKLbYdoB03oA2gIR0CqOR6i0v4/dX2UKGgGR0CcU969TP0JaAdN6ANoCEdAqjzSzqrzXnV9lChoBkdAmwFvjsD4g2gHTegDaAhHQKo/IDnNgSh1fZQoaAZHQJa1mTeO4oZoB03oA2gIR0CqQi/wy6+WdX2UKGgGR0CaZuPN3W4FaAdN6ANoCEdAqkZ/pfQa73V9lChoBkdAl1hxWtEG7mgHTegDaAhHQKpKLP557gN1fZQoaAZHQJqHfssxwhpoB03oA2gIR0CqTH5M10kodX2UKGgGR0CZiy6xgRbsaAdN6ANoCEdAqk+Q/1QIlnV9lChoBkdAl9rKa9bosGgHTegDaAhHQKpT1BTn7pF1fZQoaAZHQJo6aFL39JloB03oA2gIR0CqV4KjJuEVdX2UKGgGR0CakuTw2ETQaAdN6ANoCEdAqlnUujASF3V9lChoBkdAmttsEvCdjGgHTegDaAhHQKpc7DTBqKx1fZQoaAZHQJgBHg62fChoB03oA2gIR0CqYUJVKf4AdX2UKGgGR0CZ75/9YOlPaAdN6ANoCEdAqmTstsenynV9lChoBkdAmjLBJul41WgHTegDaAhHQKpnP2OhkAh1fZQoaAZHQJNV+zRhMJxoB03oA2gIR0CqalVOj7AMdX2UKGgGR0CW4e8LKFIvaAdN6ANoCEdAqm6dUMoc73V9lChoBkdAmTvb6tT1kGgHTegDaAhHQKpyT1Oj7AN1fZQoaAZHQJcXNe3QUpNoB03oA2gIR0CqdKjdYW+HdX2UKGgGR0CZW55Yoy9FaAdN6ANoCEdAqne9schkiHV9lChoBkdAk6CxgJC0GGgHTegDaAhHQKp8F+9alk91fZQoaAZHQJbD06fapP1oB03oA2gIR0Cqf8DpTuOTdX2UKGgGR0CS93xGlQ/HaAdN6ANoCEdAqoISLdepoHV9lChoBkdAleuR0hePaWgHTegDaAhHQKqFJ/Ot4iZ1fZQoaAZHQJTbvdl/YrdoB03oA2gIR0CqiXMk6cRUdX2UKGgGR0CXS3Ly+YdAaAdN6ANoCEdAqo0fD1oQF3V9lChoBkdAmNOOD3/PxGgHTegDaAhHQKqPdRuTA311fZQoaAZHQJjbDOUt7KJoB03oA2gIR0Cqkon9ehPCdX2UKGgGR0CZutxW1c+raAdN6ANoCEdAqpbej4593XV9lChoBkdAmdNBZIQOF2gHTegDaAhHQKqaexcE/0N1fZQoaAZHQJs05BKL879oB03oA2gIR0CqnMxvWH1wdX2UKGgGR0CYVwsUIsy0aAdN6ANoCEdAqp/dPi1iOXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7ca1c8627cb1cb7883d7cd5bb8a0645fb5f1207f2348aa190f44c7af39e6881
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7758263092aca87012ee47313730fb98b11e276563f02bc8eed9a7b150488692
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c266a854700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c266a854790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c266a854820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c266a8548b0>", "_build": "<function ActorCriticPolicy._build at 0x7c266a854940>", "forward": "<function ActorCriticPolicy.forward at 0x7c266a8549d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c266a854a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c266a854af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c266a854b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c266a854c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c266a854ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c266a854d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c266a849480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691222865271846208, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP2ksL6HRNy+pDnuPp+Rmj9KjVe/jy0sP8M8lL7Lxso9iyNhP+ZzQL+JQaG+vPrLPtgpeL8TY+2/m63iPkMhhz7D3CO+MMQawJhJjj2UrHE/ckWvvgn8Ub/D+Lm/FQa5vMnGVz/nzts+TOzXPqM9kL+GfuG8JvsZv6QF1D6nROs+ms5rP9zqL8D2kQk+N23QvyFRrD5YaNU+CIaAv+ykLr/Ob4a/hw/PP4CkBz+76iDADRzZPzM/Z0BWRYc+vtbHP7AZgL+KZy4/cDVAPgQcbT9f3Je/587bPv3BF8CjPZC/uEkMv1yk0T5N174+QEaSP1mXOj42Haw+e4ZOPl6Pn79AfIE/dfcLwIstQj6Y/t++HYbYvwTMCD3YE4E+gkCHPj82VT8/Wzu/viJRP4gqFr5AskW/NRBDvwdxuL87+7E+X9yXv+fO2z5M7Nc+oz2Qv61dOL+gyBU/nUePPtNHSz+zrhu/YN8Qv/hLWL5bIKo9tyO3PnasYT8wrAa/0XL4PdyO+r4V2tI+2fgiP5q3hb5fbK8/z+FyP329zDzPNGc+Ezcyv41m+71ij8U8rD92v1/cl7/nzts+TOzXPvssYz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAbZiq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGVyPQAAAADzDAHAAAAAAAHMGD0AAAAAW1nePwAAAAAp39S9AAAAANTm3T8AAAAAQW6SvAAAAAAmDP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHx7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMW1M7wAAAAAkRP8vwAAAACHdZE9AAAAADAW6T8AAAAAItUHvgAAAADKXOk/AAAAALDF0z0AAAAADkPovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2qQrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDVwkS9AAAAAL2N478AAAAAoDnrvQAAAABwPfg/AAAAALQuyL0AAAAAUPr1PwAAAADcJR+9AAAAAMmf3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXKi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWgEEPgAAAADGa+e/AAAAAD6tjToAAAAAJOfwPwAAAADDuhG8AAAAAM+Q4z8AAAAAvoWivQAAAABUNO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIY4VKZlWfeMAWyUTegDjAF0lEdAqVQBUzbeuXV9lChoBkdAl6JRC+lCTmgHTegDaAhHQKlXv3JxNqR1fZQoaAZHQJcdOW/rSmZoB03oA2gIR0CpWhus90RwdX2UKGgGR0CVNwe8wpOOaAdN6ANoCEdAqV1G5avA5HV9lChoBkdAlLDdI5HVgGgHTegDaAhHQKlhojUutfZ1fZQoaAZHQJRIfYwqRU5oB03oA2gIR0CpZYTq0MPSdX2UKGgGR0CSaT74SHuaaAdN6ANoCEdAqWfsSRKYiXV9lChoBkdAlbkDbWVeKWgHTegDaAhHQKlrF5IpYtB1fZQoaAZHQJYHU3GXHBFoB03oA2gIR0Cpb5TyjHn2dX2UKGgGR0CWYpYG+sYEaAdN6ANoCEdAqXNbncL0BnV9lChoBkdAl6pxg7YChmgHTegDaAhHQKl1sgKWszV1fZQoaAZHQJbtPzpX6qNoB03oA2gIR0CpeN05MlC1dX2UKGgGR0CWHmPeHi3oaAdN6ANoCEdAqX06k2xY73V9lChoBkdAljxmX5WRzWgHTegDaAhHQKmBCrnTy8V1fZQoaAZHQJUNimygPEtoB03oA2gIR0Cpg1feLvTgdX2UKGgGR0CYa78JD3M7aAdN6ANoCEdAqYZ0GeMAFXV9lChoBkdAl9xOVX3g1mgHTegDaAhHQKmK0Mhouf51fZQoaAZHQJZwq9vjwQVoB03oA2gIR0Cpjq6bvw3HdX2UKGgGR0CUr0TCcf/4aAdN6ANoCEdAqZEE4DLbH3V9lChoBkdAlanr1AZ88mgHTegDaAhHQKmUKW9DhLp1fZQoaAZHQJVH1EmY0EZoB03oA2gIR0CpmHwCCBf8dX2UKGgGR0CW0xSMLncMaAdN6ANoCEdAqZwnhKlHjXV9lChoBkdAlVda5TZQHmgHTegDaAhHQKmehPJq7Ad1fZQoaAZHQJW+Z/G2kSFoB03oA2gIR0CpobAj6eoUdX2UKGgGR0CVYsllK9PDaAdN6ANoCEdAqaYOeSSvDHV9lChoBkdAl3MqV6eGwmgHTegDaAhHQKmpu4m1IAh1fZQoaAZHQJX5Sj59E1FoB03oA2gIR0CprA24mTkidX2UKGgGR0CRZmK8tf5UaAdN6ANoCEdAqa8lI3BHkXV9lChoBkdAl0SU1yeZomgHTegDaAhHQKmzdhP0qYt1fZQoaAZHQJswPV2A5JdoB03oA2gIR0CptzEjX4CZdX2UKGgGR0CaCAPZ7HAAaAdN6ANoCEdAqbmPMhX8wnV9lChoBkdAmakPb48EFGgHTegDaAhHQKm8oUNayKN1fZQoaAZHQJX7tkOI68xoB03oA2gIR0CpwOoJzDGcdX2UKGgGR0CaVBgBcRlIaAdN6ANoCEdAqcSRTXJ5mnV9lChoBkdAlxJIt+TePGgHTegDaAhHQKnG4iB5HEx1fZQoaAZHQJiyRtix3V1oB03oA2gIR0Cpyfa6J66bdX2UKGgGR0CYKatr9EThaAdN6ANoCEdAqc5NRYRuj3V9lChoBkdAlAu59Vmz0GgHTegDaAhHQKnR/bwjMV11fZQoaAZHQJlN65iExqRoB03oA2gIR0Cp1E0W2w3YdX2UKGgGR0CXSf1Iy0rtaAdN6ANoCEdAqddeMMqjJ3V9lChoBkdAmdzG7SRbKWgHTegDaAhHQKnbnDxb0OF1fZQoaAZHQJkvCn62v0RoB03oA2gIR0Cp3zgeaKDTdX2UKGgGR0CZI5B/ZuhsaAdN6ANoCEdAqeGHbdrO7nV9lChoBkdAlyx8OTaCc2gHTegDaAhHQKnkmAiml691fZQoaAZHQJhr1A+pwS9oB03oA2gIR0Cp6PXkYGdJdX2UKGgGR0CZBkx/ustDaAdN6ANoCEdAqeyimKqGUXV9lChoBkdAnLkWI0qH5GgHTegDaAhHQKnu83lS0jV1fZQoaAZHQJsAPY9Pk7xoB03oA2gIR0Cp8gDm8ujAdX2UKGgGR0CcVNg7YChfaAdN6ANoCEdAqfZGtwJgLXV9lChoBkdAnB9tKZlWfmgHTegDaAhHQKn5433Hq/x1fZQoaAZHQJr9VjWkJrtoB03oA2gIR0Cp/DlAu7HydX2UKGgGR0CbIfpKjBVNaAdN6ANoCEdAqf9Wac7Qs3V9lChoBkdAmcUmcWj46GgHTegDaAhHQKoDo8mrsB11fZQoaAZHQJtsyv/zasZoB03oA2gIR0CqB0Oq3mV8dX2UKGgGR0CZSEiB5HEuaAdN6ANoCEdAqgmQCKaXr3V9lChoBkdAmWbk2Hck+2gHTegDaAhHQKoMpZOBUaR1fZQoaAZHQJrPanBLwnZoB03oA2gIR0CqEOfgR9PUdX2UKGgGR0CZoEctGus+aAdN6ANoCEdAqhSWn889wHV9lChoBkdAli0g62fCh2gHTegDaAhHQKoW6I0IkZ91fZQoaAZHQJtWJihFmWdoB03oA2gIR0CqGgMjeKsNdX2UKGgGR0CcG6E6T4cnaAdN6ANoCEdAqh5W3c580HV9lChoBkdAm9b+IZZSvWgHTegDaAhHQKoiDZcLSeB1fZQoaAZHQJgShGMGX5ZoB03oA2gIR0CqJGFjEvTPdX2UKGgGR0CagFKDCgscaAdN6ANoCEdAqidy++M6zXV9lChoBkdAnMkMGgSOBGgHTegDaAhHQKorqSOBDoh1fZQoaAZHQJfSRIlMRHxoB03oA2gIR0CqL1pTuOS4dX2UKGgGR0CbDL/vfCQ+aAdN6ANoCEdAqjGpDw6QvHV9lChoBkdAmKGBUm2LHmgHTegDaAhHQKo0wqXnhbZ1fZQoaAZHQJyR6zKLbYdoB03oA2gIR0CqOR6i0v4/dX2UKGgGR0CcU969TP0JaAdN6ANoCEdAqjzSzqrzXnV9lChoBkdAmwFvjsD4g2gHTegDaAhHQKo/IDnNgSh1fZQoaAZHQJa1mTeO4oZoB03oA2gIR0CqQi/wy6+WdX2UKGgGR0CaZuPN3W4FaAdN6ANoCEdAqkZ/pfQa73V9lChoBkdAl1hxWtEG7mgHTegDaAhHQKpKLP557gN1fZQoaAZHQJqHfssxwhpoB03oA2gIR0CqTH5M10kodX2UKGgGR0CZiy6xgRbsaAdN6ANoCEdAqk+Q/1QIlnV9lChoBkdAl9rKa9bosGgHTegDaAhHQKpT1BTn7pF1fZQoaAZHQJo6aFL39JloB03oA2gIR0CqV4KjJuEVdX2UKGgGR0CakuTw2ETQaAdN6ANoCEdAqlnUujASF3V9lChoBkdAmttsEvCdjGgHTegDaAhHQKpc7DTBqKx1fZQoaAZHQJgBHg62fChoB03oA2gIR0CqYUJVKf4AdX2UKGgGR0CZ75/9YOlPaAdN6ANoCEdAqmTstsenynV9lChoBkdAmjLBJul41WgHTegDaAhHQKpnP2OhkAh1fZQoaAZHQJNV+zRhMJxoB03oA2gIR0CqalVOj7AMdX2UKGgGR0CW4e8LKFIvaAdN6ANoCEdAqm6dUMoc73V9lChoBkdAmTvb6tT1kGgHTegDaAhHQKpyT1Oj7AN1fZQoaAZHQJcXNe3QUpNoB03oA2gIR0CqdKjdYW+HdX2UKGgGR0CZW55Yoy9FaAdN6ANoCEdAqne9schkiHV9lChoBkdAk6CxgJC0GGgHTegDaAhHQKp8F+9alk91fZQoaAZHQJbD06fapP1oB03oA2gIR0Cqf8DpTuOTdX2UKGgGR0CS93xGlQ/HaAdN6ANoCEdAqoISLdepoHV9lChoBkdAleuR0hePaWgHTegDaAhHQKqFJ/Ot4iZ1fZQoaAZHQJTbvdl/YrdoB03oA2gIR0CqiXMk6cRUdX2UKGgGR0CXS3Ly+YdAaAdN6ANoCEdAqo0fD1oQF3V9lChoBkdAmNOOD3/PxGgHTegDaAhHQKqPdRuTA311fZQoaAZHQJjbDOUt7KJoB03oA2gIR0Cqkon9ehPCdX2UKGgGR0CZutxW1c+raAdN6ANoCEdAqpbej4593XV9lChoBkdAmdNBZIQOF2gHTegDaAhHQKqaexcE/0N1fZQoaAZHQJs05BKL879oB03oA2gIR0CqnMxvWH1wdX2UKGgGR0CYVwsUIsy0aAdN6ANoCEdAqp/dPi1iOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38935b920f6df02798b9bb8a290c90f25822035eb955513ae8c8c91d5a98165d
3
+ size 1051560
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1411.209081411548, "std_reward": 388.9853203058268, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-05T09:13:31.133215"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0bf288166aa4f4b3c0ba5e099fa08316d96af1edaf7f9bd91f14070cbf6986c
3
+ size 2176