File size: 3,501 Bytes
f0710f2 582b66a f0710f2 582b66a f0710f2 aadf6de f0710f2 582b66a f0710f2 582b66a f0710f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
base_model: dccuchile/albert-base-spanish-finetuned-ner
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: albert-base-spanish-finetuned-ner-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-spanish-finetuned-ner-finetuned-ner
This model is a fine-tuned version of [dccuchile/albert-base-spanish-finetuned-ner](https://huggingface.co/dccuchile/albert-base-spanish-finetuned-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3012
- Precision: 0.8356
- Recall: 0.8356
- F1: 0.8356
- Accuracy: 0.9385
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 13 | 1.8849 | 0.0 | 0.0 | 0.0 | 0.5939 |
| No log | 2.0 | 26 | 1.4600 | 0.0 | 0.0 | 0.0 | 0.6687 |
| No log | 3.0 | 39 | 1.1449 | 0.0 | 0.0 | 0.0 | 0.6832 |
| No log | 4.0 | 52 | 0.9138 | 0.2857 | 0.2329 | 0.2566 | 0.8056 |
| No log | 5.0 | 65 | 0.7441 | 0.4504 | 0.4041 | 0.4260 | 0.8399 |
| No log | 6.0 | 78 | 0.6292 | 0.5310 | 0.5274 | 0.5292 | 0.875 |
| No log | 7.0 | 91 | 0.5406 | 0.6786 | 0.6507 | 0.6643 | 0.9041 |
| No log | 8.0 | 104 | 0.4747 | 0.7397 | 0.7397 | 0.7397 | 0.9259 |
| No log | 9.0 | 117 | 0.4228 | 0.7945 | 0.7945 | 0.7945 | 0.9306 |
| No log | 10.0 | 130 | 0.3900 | 0.8333 | 0.8219 | 0.8276 | 0.9332 |
| No log | 11.0 | 143 | 0.3685 | 0.8392 | 0.8219 | 0.8304 | 0.9339 |
| No log | 12.0 | 156 | 0.3487 | 0.8333 | 0.8219 | 0.8276 | 0.9339 |
| No log | 13.0 | 169 | 0.3325 | 0.8219 | 0.8219 | 0.8219 | 0.9339 |
| No log | 14.0 | 182 | 0.3227 | 0.8472 | 0.8356 | 0.8414 | 0.9339 |
| No log | 15.0 | 195 | 0.3150 | 0.8531 | 0.8356 | 0.8443 | 0.9358 |
| No log | 16.0 | 208 | 0.3094 | 0.8345 | 0.8288 | 0.8316 | 0.9358 |
| No log | 17.0 | 221 | 0.3047 | 0.8414 | 0.8356 | 0.8385 | 0.9378 |
| No log | 18.0 | 234 | 0.3027 | 0.8356 | 0.8356 | 0.8356 | 0.9385 |
| No log | 19.0 | 247 | 0.3017 | 0.8414 | 0.8356 | 0.8385 | 0.9385 |
| No log | 20.0 | 260 | 0.3012 | 0.8356 | 0.8356 | 0.8356 | 0.9385 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
|