--- library_name: transformers base_model: dccuchile/albert-base-spanish-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: albert-base-spanish-finetuned-ner-finetuned-ner results: [] --- # albert-base-spanish-finetuned-ner-finetuned-ner This model is a fine-tuned version of [dccuchile/albert-base-spanish-finetuned-ner](https://huggingface.co/dccuchile/albert-base-spanish-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3012 - Precision: 0.8356 - Recall: 0.8356 - F1: 0.8356 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 1.8849 | 0.0 | 0.0 | 0.0 | 0.5939 | | No log | 2.0 | 26 | 1.4600 | 0.0 | 0.0 | 0.0 | 0.6687 | | No log | 3.0 | 39 | 1.1449 | 0.0 | 0.0 | 0.0 | 0.6832 | | No log | 4.0 | 52 | 0.9138 | 0.2857 | 0.2329 | 0.2566 | 0.8056 | | No log | 5.0 | 65 | 0.7441 | 0.4504 | 0.4041 | 0.4260 | 0.8399 | | No log | 6.0 | 78 | 0.6292 | 0.5310 | 0.5274 | 0.5292 | 0.875 | | No log | 7.0 | 91 | 0.5406 | 0.6786 | 0.6507 | 0.6643 | 0.9041 | | No log | 8.0 | 104 | 0.4747 | 0.7397 | 0.7397 | 0.7397 | 0.9259 | | No log | 9.0 | 117 | 0.4228 | 0.7945 | 0.7945 | 0.7945 | 0.9306 | | No log | 10.0 | 130 | 0.3900 | 0.8333 | 0.8219 | 0.8276 | 0.9332 | | No log | 11.0 | 143 | 0.3685 | 0.8392 | 0.8219 | 0.8304 | 0.9339 | | No log | 12.0 | 156 | 0.3487 | 0.8333 | 0.8219 | 0.8276 | 0.9339 | | No log | 13.0 | 169 | 0.3325 | 0.8219 | 0.8219 | 0.8219 | 0.9339 | | No log | 14.0 | 182 | 0.3227 | 0.8472 | 0.8356 | 0.8414 | 0.9339 | | No log | 15.0 | 195 | 0.3150 | 0.8531 | 0.8356 | 0.8443 | 0.9358 | | No log | 16.0 | 208 | 0.3094 | 0.8345 | 0.8288 | 0.8316 | 0.9358 | | No log | 17.0 | 221 | 0.3047 | 0.8414 | 0.8356 | 0.8385 | 0.9378 | | No log | 18.0 | 234 | 0.3027 | 0.8356 | 0.8356 | 0.8356 | 0.9385 | | No log | 19.0 | 247 | 0.3017 | 0.8414 | 0.8356 | 0.8385 | 0.9385 | | No log | 20.0 | 260 | 0.3012 | 0.8356 | 0.8356 | 0.8356 | 0.9385 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1